07-2 Basic instruction

last modified by Stone Stone
on 2022/06/14 16:25

Table of Contents

Logic Operation Instructions 3
NEG/16-bit complement 3
DNEG/32-bit complement 4
WOR/16-bit data logical OR 5
DOR/32-bit data logical OR 7
WAND/16-bit data logic AND 8
DAND/32-bit data logic AND 10
WXOR/16-bit data logic exclusive OR 11
DXOR/32-bit data logic exclusive OR 12
PRUN/8 digit transmission (16-bit data) 14
Data processing instructions 15
BCC/BIN16 and BIN8 bit data addition, subtraction and exclusive check 15
MAX/BIN16 bit the maximum value of 16 -bit data 19
DMAX/BIN32 bit the maximum value of 32-bit data 21
MIN/BIN16 bit the minimum value of 16-bit data 22
DMIN/BIN32 bit the minimum value of 32-bit data 24
ANS/alarm settings 25
ANR/Alarm reset 27
BON/16-bit data bit judgment 29
DBON/32-bit data bit judgment 31
ENCO/Encode 32
DECO/Decode 33
SUM/The ON bits of 16-bit data 34
DSUM/The ON bits of 32-bit data 36
MEAN/Mean value of 16 -bit data 37
DMEAN/Mean value of 16 -bit data 39
SQR/16-bit square root 40
DSQR/32-bit square root 41
WSUM/The sum value of 16 -bit data 42
DWSUM/The sum value of 32-bit data 44
SORT/16-bit data sorting 45
SORT2/16-bit data sorting 47
DSORT2/32-bit data sorting 51
SWAP/16-bit data high and low byte swap 55
DSWAP/32-bit data high and low byte swap 56
BTOW/Byte unit data merge 57
WTOB/Byte unit data separation 60
DIS/4-bit separation of 16-bit data 62
UNI/4-bit combination of 16-bit data 63
ZRST/Data batch reset 65
ZSET/Data batch set 67
CRC/cyclic redundancy check instruction 68

Logic Operation Instructions

NEG/16-bit complement

NEG(P)

After inverting the sign of the BIN 16-bit device specified in (D), store it in the device specified in (D).
-[NEG (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	The start device that stores the data complement of 2	-32768 to 32767	Signed BIN16	ANY16_S

Device used

Features

- Invert the sign of the BIN 16-bit device specified in (D), and store it in the device specified in (D).
- Used when inverting positive and negative signs.

\#Note: If the continuous execution (NEG) instruction is used, every operation cycle will be inverted, so care should be taken.

Error code

Error code
4085 H
4086 H

Example

Content

The output results of (D) in the read application instruction exceed the device range
The output result of (D) in the write application instruction exceeds the device range

In the two examples below, if $\mathrm{D} 2=\mathrm{K} 4$ and $\mathrm{D} 4=\mathrm{K} 8$, or $\mathrm{D} 2=\mathrm{K} 8$ and D 10 is always K 4 .
Each time M0 is set, the device value specified in D0 is reversed.

Take the absolute value of the difference of the subtraction operation.
If $D 2>D 4, M 10=O n$. If $D 2=D 4, M 11=O n$. If $D 2<D 4, M 12=O n$. This ensures that $D 10$ is positive.
It can also be represented by the following program:

When bit15 of D10 is "1" (indicating that D10 is a negative number), M10 $=\mathrm{On}$, use NEG instruction to complement D10 to obtain the absolute value of D10.

In the above two examples, if D2=K4, D4=K8; or D2=K8, D4=K4, the result of D10 is K4.

DNEG/32-bit complement

DNEG(P)

After inverting the sign of the BIN 32-bit device specified in (D), store it in the device specified in (D).
-[DNEG (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	The start device that stores the data complement of 2	-2147483648	Signed BIN16	ANY16_S

Device used

Instructiozrameter	Devices									Offset Pulse modificatéxtension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	[D]	XXP
$\text { DNEG } \begin{gathered} \text { Parameter } \\ 1 \end{gathered} \bullet$	-	\bullet										

Features

- Invert the sign of the BIN 32-bit device specified in (D) and store it in the device specified in (D).
- Used when inverting positive and negative signs.

\#Note: If you use continuous execution (DNEG) instructions, every operation cycle will be inverted, so care should be taken.

Error code

Error code	Content
4085 H	The output results of (D) in the read application instruction exceed the device range
4086 H	The output result of (D) in the write application instruction exceeds the device range

Example

Each time M0 is set, the device value specified in (D1, D0) is reversed.

WOR/16-bit data logical OR

WOR(P)

Perform a logical OR operation on the BIN 16-bit data of the device specified in (S1) and the BIN 16-bit data of the device specified in (S2), and store the result in the device specified in (D).
-[WOR (S1) (S2) (D)]
Content, range and data type
Parameter
Content
Range
Data type
Data type (label)

(S1)	Stores data for logical OR operation or a device that stores data	-32768 to 32767	Signed BIN16	ANY16_S
(S2)	Stores data for logical OR operation or a device that stores data	-32768 to 32767	Signed BIN16	ANY16_S
(D)	Device for storing logic or result	Signed BIN16	ANY16_S	

Device used

Instructioarameter	Devices									Offset Pulse modificatecotension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
Parameter 1	\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
$\text { WOR } \begin{gathered} \text { Parameter } \\ 2 \end{gathered}$	\bullet											
Parameter 3	\bullet			\bullet	\bullet							

Features

- Perform a logical OR operation on the BIN 16-bit data of the device specified in (S1) and the BIN 16-bit data of the device specified in (S2), and store the result in the device specified in (D).

(s1)	1													b8		b7														b0
	1	1	1	I	0	\|	0		0	10	1	0	!	0			1		1	1	!	1		0	,	0		0		0

(d)

In the case of bit devices, bit devices after the number of points specified by the number of digits will be calculated as 0 .

Error code

Error code
4085 H
4086 H

Content

The output results of (S1) and (S2) in the read application instruction exceed the device range
The output result of (D) in the write application instruction exceeds the device range

Example

$\left.\left.\begin{array}{|lllll}\text { M0 } & \text { [WOR } & \text { D0 } & \text { D2 } & \text { D4 }\end{array}\right]\right\}$

When M0 is set, (D0) and (D2) are logically performed, and the value is stored in (D4), that is (D0) $\vee(\mathrm{D} 2) \rightarrow(\mathrm{D} 4)$

DOR/32-bit data logical OR

DOR(P)
After inverting the sign of the BIN 32-bit device specified in (D), store it in the device specified in (D).
-[DOR (S1) (S2) (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Stores data for logical OR operation or a device that stores data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(S2)	Stores data for logical OR operation or a device that stores data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(D)	Device for storing logic or result		Signed BIN32	ANY32_S

Device used

InstrucferameterKnX	Devices											Offset Pulse modificałidension		
	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	[D]	XXP
Parameter 1	-	\bullet	-	\bullet	-	\bullet	-	\bullet						
$\text { DOR } \begin{gathered} \text { Parameter } \\ 2 \end{gathered}$	\bullet													
Parameter 3	\bullet			\bullet	\bullet									

Features

Perform a logical OR operation on the BIN 32-bit data of the device specified in (S1) and the BIN 32-bit data of the device specified in (S2), and store the result in the device specified in (D).
(d) +1
(d)

(s) +1
(s)

(d) +1
(d)

In the case of bit devices, bit devices after the number of points specified by the number of digits will be calculated as 0 .

Error code

Error code
4085H
4086H

Content

The output results of (S1) and (S2) in the read application instruction exceed the device range
The output result of (D) in the write application instruction exceeds the device range

Example

When M0 is set, (D1, D0) and (D3, D2) are logically performed, and the value is stored in (D5, D4), that is, (D1, D0) $\vee(\mathrm{D} 3, \mathrm{D} 2) \rightarrow(\mathrm{D} 5, \mathrm{D} 4))$.

WAND/16-bit data logic AND

WAND(P)

Perform a logical AND operation on each bit of the BIN 16-bit data of the device specified in (S1) and the BIN 16bit data of the device specified in (S2), and store the result in the device specified in (D).
-[WAND (S1) (S2) (D)]

Content, range and data type

Parameter
(S1)

Content
Store the data for logical AND operation or the device storing the data

Range
-32768to 32767
Signed BIN16

Data type (label)
ANY16_S

| (S2) | Store the data for logical
 AND operation or the
 device storing the data | -32768 to 32767 | Signed BIN16 |
| :--- | :--- | :--- | :--- |\quad ANY16_S

Device used

Instructioarameter		Devices									Offset Pulse modificatéchension		
	KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
Parameter 1	\bullet	-	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
$\text { WAND } \begin{gathered} \text { Parameter } \\ 2 \end{gathered}$	\bullet	\bullet	-	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
$\begin{gathered} \text { Parameter } \\ 3 \end{gathered}$		\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet			\bullet	\bullet

Features

Perform a logical AND operation on each bit of the BIN 16-bit data of the device specified in (S1) and the BIN 16bit data of the device specified in (S2), and store the result in the device specified in (D).

In the case of bit devices, bit devices after the number of points specified by the number of digits will be calculated as 0 .

Error code

Error code
 4085H
 4086H

Content

The output results of (S1) and (S2) in the read application instruction exceed the device range
The output result of (D) in the write application instruction exceeds the device range

Example

When M0 is set, the logical AND operation of (D0) and (D2) is performed, and the value is stored in (D4), that is, (D0) $\wedge(\mathrm{D} 2) \rightarrow(\mathrm{D} 4)$.

DAND/32-bit data logic AND

DAND(P)

Perform a logical AND operation on each bit of the BIN 32-bit data of the device specified in (S1) and the BIN 32bit data of the device specified in (S2), and store the result in the device specified in (D).

```
-[DAND (S1) (S2) (D)]
```

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Store the data for logical AND operation or the device storing the data	-2147483648 to +2147483647	Signed BIN32	ANY32_S
(S2)	Store the data for logical AND operation or the device storing the data	-2147483648 to		
(D)	Device for storing logic and result	Signed BIN32	ANY32_S	
(D)		Signed BIN32	ANY32_S	

Device used

InstrucFenameter	Devices											Offset Pulse modificatidension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	[D]	XXP
Parameter 1	\bullet	\bullet	\bullet	-	-	\bullet								
$\text { DAND }{ }_{2}^{\text {arameter }}$	\bullet	\bullet	\bullet	-	-	\bullet								
Parameter 3	\bullet	-	-	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet			\bullet	\bullet

Features

Perform a logical AND operation on each bit of the BIN 32-bit data of the device specified in (S1) and the BIN 32bit data of the device specified in (S2), and store the result in the device specified in (D).

In the case of bit devices, bit devices after the number of points specified by the number of digits will be calculated as 0 .

Error code

Error code
4085 H
4086 H

Content

The output results of (S1) and (S2) in the read application instruction exceed the device range
The output result of (D) in the write application instruction exceeds the device range

Example

When M0 is set, perform logical AND operation of (D1, D0) and (D3, D2), and store the value in (D5, D4), (D1, D0) $\wedge(D 3, D 2) \rightarrow(D 5, D 4)$.

WXOR/16-bit data logic exclusive OR

WXOR(P)

Perform an exclusive OR operation on the BIN 16-bit data of the device specified in (S1) and the BIN 16-bit data of the device specified in (S2), and store the result in the device specified in (D).
-[WXOR (S1) (S2) (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Store the data for exclusive OR operation or the device storing the data	-32768 to 32767	Signed BIN16	ANY16_S
(S2)	Store the data for exclusive OR operation or the device storing the data	-32768 to +32767	Signed BIN16	ANY16_S
(D)	Device for storing XOR result	Signed BIN16	ANY16_S	

Device used

- Perform logical exclusive OR operation on the BIN 16-bit data of the device specified in (S1) and the BIN 16-bit data of the device specified in (S2), and store the result in the device specified in (D).
(s1)

(s2)

(d)

In the case of bit devices, bit devices after the number of points specified by the number of digits will be calculated as 0 .

Error code

Example 2: When used with the CML instruction, it can realize the logic exclusive OR (XORNOT) operation:

DXOR/32-bit data logic exclusive OR

DXOR(P)

Perform an exclusive OR operation on the BIN 32-bit data of the device specified in (S1) and the BIN 32-bit data of the device specified in (S2), and store the result in the device specified in (D).
-[DXOR (S1) (S2) (D)]
Content, range and data type
Parameter
Content
Range
Data type
Data type (label)
(S1)
(S2)
(D)

Store the data for exclusive OR operation
or the device storing the
data
Store the data for
exclusive OR operation
or the device storing the
data
Device for storing XOR
result exclusive OR operation
or the device storing the
data
Store the data for
exclusive OR operation
or the device storing the
data
Device for storing XOR
result

Device used

Instrucfiamameter$\mathbf{K n}$	Devices											Offset Pulse modificałidension		
	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	[D]	XXP
Parameter 1	\bullet	\bullet	\bullet	-	\bullet	-	\bullet							
$\text { DXOR }_{2}^{\text {arameter }}$	\bullet	\bullet	\bullet	-	\bullet									
Parameter 3	\bullet			\bullet	\bullet									

Features

Perform an exclusive OR operation on the BIN 32-bit data of the device specified in (S1) and the BIN 32-bit data of the device specified in (S2), and store the result in the device specified in (D).
(d) +1
(d)

(s) +1
(s)

(d)

(d)

In the case of bit devices, bit devices after the number of points specified by the number of digits will be calculated as 0 .

Error code

Error code

4085H

Content

The output results of (S1) and (S2)in the read application instruction exceed the device range

The output result of (D) in the write application instruction exceeds the device range

Example

When M0 is set, (D1, D0) and (D3, D2) are XOR operation, and the value is stored in (D5, D4), that is, (D1, D0) \forall (D3, D2) \rightarrow (D5, D4))

PRUN/8 digit transmission (16-bit data)

PRUN(P)

After processing the device numbers of (s) and (d) with designated digits as octal numbers, transfer the data.
-[PRUN (s) (d)]
Content, range and data type

Parameter	Content	Range	data	Data type (label)
(s)	Digit designation*1	-	BIN16 bit	ANY16
(d)	Transfer destination	-	BIN16 bit	ANY16

Device used

Instruction	Parameter	Devices		Offset modification	Pulse extension	
		KnX	KnY	KnM	[D]	XXP
PRUN	Parameter 1	\bullet		\bullet	\bullet	\bullet
	Parameter 2		\bullet	\bullet	\bullet	\bullet

Features

- 8-digit device \rightarrow decimal device

- Decimal digit device \rightarrow octal digit device

$\mathrm{M} 0 \sim \mathrm{M} 7, \mathrm{M} 10 \sim \mathrm{M} 17 \rightarrow \mathrm{Y} 0 \sim \mathrm{Y} 17$

8-digit device (Y)

Error code

Error code
4085H

4086H

Content

When reading the specified device range exceeds the corresponding device range
When the specified device range for writing exceeds the range of the corresponding device

Example

As shown in the above Circuit program:
X0 to X17 take the value of octal digits and pass it to the Devices corresponding to M.

Data processing instructions

BCC/BIN16 and BIN8 bit data addition, subtraction and exclusive check

BCC (P)

Specify the calculation method of BCC in (S1), specify the destination start address in (S2), and specify the destination data length in (S3), and then store the operation result in the device specified in (D).

- [BCC (S1) (S2) (S3) (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	16-bit constant or the calculation method of 16-bit regions (block check code)	0 to 2	BIN16 bit	ANY16_S
(S2)	Calculate the initial 16bit regions of BCC	-	BIN16 bit	ANY16_S
(S3)	16-bit constant or 16bit regions (specify the number of bytes calculated by BCC)	0 to 32767	BIN16 bit	ANY16_S
(D)	Stores 16 -bit regions of BCC results	-	BIN16 bit	ANY16_S

Device used

Features

According to the calculation method specified by S1, starting from the 16-bit data specified by S2, calculate the ASCII block check code (BCC) of the number of bytes specified by S3, and then store the result of BCC code in the low byte of 16 -bit data specified by D .

S1: Specify the calculation method of BCC.
K0: Addition operation
K1: Subtraction operation
K2: Exclusive or operation
S2 and s3: Specify the destination data
For example, if the destination is the 12 bytes data starting from D0, the settings are as below.
S2: D0
S3: K12 (specify the data by decimal)
The modes used in the calculation of this instruction are 16-bit conversion mode and 8 -bit conversion mode. For the actions of each mode, refer to the followings.
(1) 16-bit conversion mode (When SM161 is OFF)

Calculate the high 8-bit (byte) and low 8-bit (byte) of device that started from (S2) and specify the byte length by (S3), and store the low 8 -bit of device specified by (D). The conversion result is as below.

(2) 8-bit conversion mode (When SM161 is ON)

Calculate the low 8-bit (byte) of device that started from (S2) and specify the byte length by (S3), and store the low 8-bit of device specified by (D). The conversion result is as below.

Error code

Error code
4084H

Content

The read application instructions (S1) and (S3) input the data that exceeds the specified range

4085H

4086H

The device specified in the read application instructions (S1), (S2) and (S3) exceeds the corresponding device range The device specified in the write application instruction (D) exceeds the corresponding device range

Example

When the trigger M0 is ON, calculate the a block check code (BCC) of 12-bit bytes of ASCII data starting from data register D0 by "exclusive or operation". The block check code (BCC) is stored in the low bit byte of data register D6.

Application example

In the example ,calculate the BCC code and send as information after adding to the string "\%01 $\rightarrow \mathrm{RC}$ ".
The data transmission is carried out in the form of ASCII codes.
CC calculations use logical exclusive OR, addition, and subtraction.
The information is stored as follows:

BCC check code 6 byte

BCC instruction is as below: Execution or operation

\mathbf{a}	b	OR result
0	0	0
0	1	1
1	0	1
1	1	0

S1: logic exclusive OR
S2: The start of destination data
S3: destination data lengt
D: calculation result
After the execution BCC code is stored in the last byte of D6.
How to calculate block check code (BCC)
Calculate block check code (BCD) with XOR for each ASCII code.

C	ASCII hexadecimal code	4			3				
	ASCC binary code	0	1	0	0	0	0	1	1

BCC code

ASCII hexadecimal code
ASCII binary code

1
0001

6
0110

The calculation result is stored in the low bit byte of D6

MAX/BIN16 bit the maximum value of 16-bit data

MAX (P)
Specify the destination start address in (S1), and specify the destination end address in (S2), and then store the operation result in the device specified in (D).

- [MAX (S1) (S2) (D)]

Content, range and data type

(S1)Device that stores the start address when getting the max data	-32768 to 32767	Signed BIN16	ANY16_S
(S2)Device that stores the end address when getting the max data	-32768 to 32767	Signed BIN16	ANY16_S
(D)	Stores the max value between the device data of (S1) and (S2)	-32768 to 32767	Signed BIN16

Device used

| Instruction | Parameter | Devices | | Offset
 modification |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | T Pulse | | |
| extension | | | | |

Use the BIN16 bit data specified in (S1) as the start address, and use the BIN16 bit data specified in (S2) as the end address to get the maximum value between the device of (S1) and (S2).

\#Note

1. The devices specified by (S1) and (S2) should be the same type. The type of device (D) that gets the results could be different.
2. The device size specified by (S1) can't exceed the device size specified by (S2). For example, MAX D1 D5 D10 works, but MAX D5 D1 D10 doesn't.

Error code

Error code	Content
4084 H	The read application instructions (S1) and (S2) input the data that exceeds the specified range
The device specified in the read application instructions (S1)	
and (S2) exceeds the device range	
and	The device specified in the write application instruction (D) exceeds the device range
4086 H	The specified ranges (S1) and (S2) are not the same device
4093 H	The sequence of specified ranges (S1) and (S2) is abnormal

Example

Use (D1) as the start address, and use (D5) as the end address to get the max value between them and store the result in (D6). As the figure above, the max value between (D1) and (D5) is the value in (D3) which is stored in (D6) for output.

DMAX/BIN32 bit the maximum value of 32-bit data

DMAX (P)
Specify the destination start address in (S1), and specify the destination end address in (S2), and then store the operation result in the device specified in (D).

- [DMAX (S1) (S2) (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Device that stores the start address when getting the max data	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	Signed BIN32	ANY32_S
(S2)	Device that stores the end address when getting the max data	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	Signed BIN32	ANY32_S
(D)	Stores the max value between the device data of (S1) and (S2)	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	Signed BIN32	ANY32_S

Device used

InstructionParameter	Devices							Offset Pulse modificatiorextension	
	T	C	D	R	SD	LC	HSC	[D]	XXP
(S1)	-	-	\bullet	-	-	-	-	\bullet	\bullet
DMAX (S2)	-	-	-	-	-	\bullet	-	\bullet	\bullet
(D)	\bullet	-	-	-	\bullet	\bullet	\bullet	\bullet	\bullet

Features

Use the BIN32 bit data specified in (S1) as the start address, and use the BIN32 bit data specified in (S2) as the end address to get the maximum value between the device of (S1) and (S2).

\#Note

1. The devices specified by (S1) and (S2) should be the same type. The type of device (D) that gets the results could be different.
2. The device size specified by (S1) can't exceed the device size specified by (S2). For example, DMAX D1 D5 D10 works, but DMAX D5 D1 D10 doesn't.

Error code

Error code	Content
4084 H	The read application instructions (S1) and (S2) input the data that exceeds the speicified range
4085 H	The device specified in the read application instructions (s1) and (S2) exceeds the device range
4086 H	The device specified in the write application instruction (D) exceeds the device range
4093 H	The specified ranges (S1) and (S2) are not the same device
4094 H	The sequence of specified ranges (S1) and (S2) is abnormal

Example

Use (D1) as the start address, and use (D7) as the end address to get the max value between them and store the result in (D9). As the figure above, the max value between (D1) and (D7) is the value in (D7) which is stores in (D9) for output.

MIN/BIN16 bit the minimum value of 16-bit data

MIN (P)

Specify the destination start address in (S1), and specify the destination end address in (S2), and then store the operation result in the device specified in (D).

- [MIN (S1) (S2) (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Device that stores the start address when getting the minimum data	-32768 to 32767	Signed BIN16	ANY16_S
(S2)	Device that stores the end address when getting the minimum data	-32768 to 32767	Signed BIN16	ANY16_S
(D)	Stores the minimum value between the device data of (S1) and (S2)	-32768 to 32767	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices		Offset modification	Pulse extension			
		T	C	D	R	SD	[D]	XXP

Use the BIN16 bit data specified in (S1) as the start address, and use the BIN16 bit data specified in (S2) as the end address to get the maximum value between the device of (S1) and (S2).

\#Note

1. The devices specified by (S1) and (S2) should be the same type. The type of device (D) that gets the results could be different.
2. The device size specified by (S1) can't exceed the device size specified by (S2). For example, MAX D1 D5 D10 works, but MAX D5 D1 D10 doesn't.

Error code

Error code	Content		
4084 H	$\begin{array}{l}\text { The read application instructions (S1) and (S2) input the data } \\ \text { that exceeds the specified range }\end{array}$		
The device specified in the read application instructions (S1)			
and (S2) exceeds the device range		$]$	The device specified in the write application instruction (D)
:---			
exceeds the device range			

Example

Use (D1) as the start address, and use (D5) as the end address to get the max value between them and store the result in (D6). As the figure above, the max value between (D1) and (D5) is the value in (D3) which is stored in (D6) for output.

DMIN/BIN32 bit the minimum value of 32-bit data

DMIN (P)

Specify the destination start address in (S1), and specify the destination end address in (S2), and then store the operation result in the device specified in (D).

- [DMIN (S1) (S2) (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Device that stores the start address when getting the minimum data	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	Signed BIN16	ANY16_S
(S2)	Device that stores the end address when getting the minimum data	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	Signed BIN16	ANY16_S
(D)	Stores the minimum value between the device data of (S1) and (S2)	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices		Offset modificationPulse extension				
		T	C	D	R	SD	[D]	XXP

Features

Use the BIN32 bit data specified in (S1) as the start address, and use the BIN32 bit data specified in (S2) as the end address to get the maximum value between the device of (S1) and (S2).

\#Note

1. The devices specified by (S1) and (S2) should be the same type. The type of device (D) that gets the results could be different.
2. The device size specified by (S1) can't exceed the device size specified by (S2). For example, MAX D1 D5 D10 works, but MAX D5 D1 D10 doesn't.

Error code

Error code	Content
4084 H	The read application instructions (S1) and (S2) input the data that exceeds the specified range
4085 H	The device specified in the read application instructions (S1) and (S2) exceeds the device range
	The device specified in the write application instruction (D) exceeds the device range
4086 H	The specified ranges (S1) and (S2) are not the same device
4093 H	The sequence of specified ranges (S1) and (S2) is abnormal
4094 H	

Example

Use (D1) as the start address, and use (D5) as the end address to get the max value between them and store the result in (D6). As the figure above, the max value between (D1) and (D5) is the value in (D3) which is stored in (D6) for output.

ANS/alarm settings

ANS(P)

Used to set alarm instructions.
-[ANS (S) (N) (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	Timer number for	-	Signed BIN 16 bit	ANY16
judging time	D $)$	Data that judges time	1 to 32767	Signed BIN 16 bit

Device used

Instructrarrameter	Devices										Offset Pulse modificatiotension		
	KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
Parameter 1					-							-	\bullet
$\begin{gathered} \text { ANS Parameter } \\ 2 \end{gathered}$	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet						
$\begin{gathered} \text { Parameter } \\ 3 \end{gathered}$												\bullet	\bullet

Features

When the instruction input continues to be ON for the judgment time $[(N) \times 100 \mathrm{~ms}$, timer (S)], set (D). If the instruction time turns off below the judgment time $[(N) \times 100 \mathrm{~ms}]$, the current value of the judgment timer (S) is reset, and (D) is not set. In addition, if the instruction input turns off, the judgment timer will be reset.

X1
(d)

(1)
(2)

1. Judge the time ((N)X 100 ms or less)
2. Judgment time or more (inclusive) ((N) X 100 ms or more (inclusive))

Related device

Devices	Name	Content
SM249	Signal alarm is valid	After SM249 is ON, the following SM248 and SD249 act.
SM248	Signal alarm action	SM249 is ON, when any one of the states S900 to S999 is active, SM248 is ON
SD249	Signal alarm ON state minimum number	Save the smallest number of actions in S900 to S999.

Error code

4084H
4085H
4086H

The value specified in (N1) and (N2) exceeds the range of 0 to 32767
The timer number is not in the range of T 0 to T 199 .
The signal alarm is not in the range of S900 to S999.
When the device specified in the read application instructions
(S) and (N) exceeds the corresponding device range
When the device specified in the write application instruction
(D) exceeds the corresponding device range

Example

The fault number is displayed by the signal alarm.
Monitoring is effective after SM249 is turned ON
As shown below, when you write a program for diagnosing external faults, such as monitoring the content of SM249 (the smallest number in the ON state), the smallest number in the ON state among S900 to S 999 will be displayed. When multiple faults occur at the same time, the next fault number can be obtained after eliminating the fault with the smallest number.

Detect X 1 for 2 seconds, turn ON, set S900
X4 is detected for 1 second, turn ON, set S901
SM248 will act after any one of S 900 to S 999 is ON , and the output fault display YY 6 will act
Display the fault number to the D0 device
Through the external fault diagnosis program, use the reset button M0 to turn off the activated state. Each time M0 turns ON, the action status of the new number is set in turn, and the new number that is already ON is reset.

ANR/Alarm reset

ANR(P)

The instruction to reset the small number that is ON in the alarm.
-[ANR]
Content, range and data type
Parameter Content Range Data type Data type (label)

No No parameter setting
Range
Data type
Data type (label)

Device used

Instruction Parameter

X	Y	M	S	SM	T (bit)	C (bit)

Features

If the instruction input is ON , reset the active alarm in the alarm.
If multiple alarms are operating, reset the smaller number. If the input instruction is turned ON again, the next small number in the alarm that is operating will be reset.

Related device

Devices	Name	Content
SM249	Signal alarm is valid	After SM249 is ON, the following SM248 and SD249 act.
SM248	Signal alarm action	SM249 is ON, when any one of the states S900 to S999 is active, SM248 is ON.
SD249	Signal alarm ON state minimum number	Save the smallest number of actions in S900 to S999.

\#Note:

If you use the ANR instruction, reset in sequence every cycle.
If the ANRP instruction is used, it will be executed in only one operation cycle.

Error code

No operation error.

Example

The fault number is displayed by the signal alarm.
As shown below, when you write a program for diagnosing external faults, such as monitoring the content of SM249 (the smallest number in the ON state), the smallest number in the ON state among S900 to S 999 will be displayed. When multiple faults occur at the same time, the next fault number can be obtained after eliminating the fault with the smallest number.

Monitoring is effective after SM249 is turned ON
Detect X 1 for 2 seconds, turn ON, set S 900
X 4 is detected for 1 second, turn ON, set S901
SM248 will act after any one of S 900 to S 999 is ON , and the output fault display YY 6 will act
Display the fault number to the DO device
Through the external fault diagnosis program, use the reset button M0 to turn off the activated state. Each time M0 turns ON, the action status of the new number is set in turn, and the new number that is already ON is reset.

BON/16-bit data bit judgment

BON(P)

Check whether the state of the BIN 16-bit data (N) bit of the device specified in (S) is ON or OFF, and output the result to the device specified in (D).
$-[B O N(S)(N)(D)]$
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	$\begin{array}{l}\text { Data storage destination } \\ \text { word device number } \\ \text { (D) }\end{array}$	$\begin{array}{l}\text { Bit device number of } \\ \text { drive }\end{array}$	-	Signed BIN 16 bit

Device used

Features

Check whether the state of the BIN 16-bit data (N) bit of the device specified in (S) is ON or OFF, and output the result to the device specified in (D).

If the above result is $O N$, then $(D)=O N$, if it is OFF, then $(D)=O F F$.

If a constant (K) is specified in the device specified in (S), it will be automatically converted to BIN.

Error code

Error code
4084 H
4085 H
4086 H

Content

The data input in (N) exceeds the specified range of 0 to 15 .
When the device specified in the read application instructions (S) and (N) exceeds the corresponding device range
When the device specified in the write application instruction (D) exceeds the corresponding device range

Example

When n in $\mathrm{DO}=$ the third bit is $1(\mathrm{ON}), \mathrm{MO}$ is set to $1(\mathrm{ON})$.

DBON/32-bit data bit judgment

DBON(P)

Check whether the state of the BIN 32-bit data (N) bit of the device specified in (S) is ON or OFF, and output the result to the device specified in (D).

-[DBON (S) (N) (D)]				
Content, range and data type				
Parameter	Content	Range	Data type	Data type (label)
(S)	Data storage destination word device number	-	Signed BIN 32 bit	ANY32
(D)	Bit device number of drive	-	Bit	ANY32_BOOL
(N)	The position of the bit to be judged	0 to 31	Signed BIN 32 bit	ANY32

Device used

Features

Check whether the BIN 32-bit data (N) bit status of the device specified in (S) is ON or OFF, and output the result to the device specified in (D).

If the above result is $O N$, then $(D)=O N$, if it is OFF, then $(D)=O F F$.
If a constant (K) is specified in the device specified in (S), it will be automatically converted to BIN.

Error code

Error code
4084 H
4085 H

Content

The data input in (N) exceeds the specified range of 0 to 31 .
When the device specified in the read application instructions (S) and (N) exceeds the corresponding device range

When the device specified in the write application instruction
(D) exceeds the corresponding device range

Example

When n in $\mathrm{DO}=$ the third bit is $1(\mathrm{ON}), \mathrm{MO}$ is set to $1(\mathrm{ON})$.

ENCO/Encode

ENCO(P)

Encode the data of the 2th (N)th power from (S) and store it in (D).
-[ENCO (S) (N) (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	Start device for storing coded data	-	Bit/Signed BIN 16 bit	ANY_ELEMENTARY
(D)	Device number storing the encoding result	-	Signed BIN 16 bit	ANY_ELEMENTARY
(N)	Effective bit length	0 to 8	Signed BIN 16 bit	ANY16

Device used

Features

The BIN value corresponding to the bit from $2^{(N)}$ bits of (S) to 1 is stored in (D).

When $(N)=0$, it will be no processing, and the content of the device specified in (D) will not change.
Bit devices are treated as 1 bit, and word devices are treated as 16 bits.
When multiple digits are 1, it will be processed at the upper position.

Error code

When M20 is turned ON, the D0 device is 16 after encoding.

DECO/Decode

DECO(P)

Decode the lower (N) bits of the device specified in (S), and store the result in the 2 (N)th power of the device specified in (D).
-[DECO (S) (N) (D)]

Content, range and data type

Parameter	Content			
(S)	Decoded data or the device number storing the decoded data	-	Rata type	Data type (label)
(D)	The start device storing the decoding result	-	Bit/Signed BIN 16 bit	ANY_ELEMENTARY
(N)	Effective bit length	0 to 8	Signed BIN 16 bit	ANY_ELEMENTARY
		Signed BIN 16 bit	ANY16	

Device used

Instruetioameter	Devices														OffsetPulse modificatiension		
X	Y	M	S	SM	KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
Parameter 1	\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	-	\bullet	\bullet	\bullet	-	-	\bullet	-	\bullet	\bullet
DECO_{2}	\bullet	\bullet	\bullet	\bullet					\bullet	\bullet	\bullet	\bullet	\bullet			\bullet	\bullet
$\begin{gathered} \text { Parameter } \\ 3 \end{gathered}$					-	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet	-	-	\bullet	-

Features

Turn ON the position of (D) corresponding to the BIN value specified in the lower (N) bit of (S).
When $(N)=0$, it will be no processing, and the content of the device specified in (D) will not change.
Bit devices are treated as 1 bit, and word devices are treated as 16 bits.

Error code

Error code

4084H

4085H

4086H

Content

In the bit device specification of (D), when (N) is other than 0 to 8.

In the word device specification of (D), when (N) is other than 0 to 4.
When the device specified in the read application instructions (S) and (N) exceeds the corresponding device range
When the device specified in the write application instruction (D) exceeds the corresponding device range

Example

When M20 is $\mathrm{ON}, \mathrm{M} 3$ will be turned ON .

SUM/The ON bits of 16-bit data

SUM(P)

Store the total number of bits at 1 in the BIN 16-bit data of the device specified in (S) to the device specified in (D). -[SUM (S) (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The device start number that counts the total number of bits at 1	-	Signed BIN 16 bit	

Device used

Instructioarameter	Devices									Offset Pulse modificatécotension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
Parameter 1	\bullet	-	\bullet									
SUM Parameter 2	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet			\bullet	-

Features

Store the total number of bits at 1 in the BIN 16-bit data of the device specified in (S) to the device specified in (D). When the BIN 16-bit data of the device specified in (S) is all 0 , the zero flag (SM153) turns on.

The total number of $1(\mathrm{ON})$ is stored in BIN .
There are 8 in the example on the left.

Error code

Example

When M0 is ON, the number of ON bits in D0 is counted and stored in D1. The value after D1 is executed is 4.

DSUM/The ON bits of 32-bit data

DSUM (P)

Store the total number of bits at 1 in the BIN 32-bit data of the device specified in (S) to the device specified in (D). -[SUM (S) (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The device start number that counts the total number of bits at 1	-	Signed BIN 32 bit	ANY32
(D)	The device start number of the total number of storage bits	-	Signed BIN 32 bit	ANY32

Device used

InstrucRamameter	Devices											Offset Pulse modificatidension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	[D]	XXP
Parameter 1	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	-	-
DSUM Parameter 2	\bullet			-	\bullet									

Features

Store the total number of bits at 1 in the BIN 32-bit data of the device specified in (S) to the device specified in (D). When the BIN 32-bit data of the device specified in (S) is all 0 (OFF), the zero flag (SM153) turns on.

The total number of $1(\mathrm{ON})$ is stored in BIN .
There are 16 in the example on the left.

\#Note: When the instruction input is OFF, the instruction will not be executed, and the output of the ON digits of the action will remain the same as before.

Error code

\[

\]

Example

When M0 is ON, the number of ON bits in D0 is counted and stored in D10, and the value after D10 is executed is 4.

MEAN/Mean value of 16-bit data

MEAN(P)

Store the total number of bits at 1 in the BIN 16-bit data of the device specified in (S) to the device specified in (D).
-[MEAN (S) (D) (N)]

Content, range and data type

Parameter	Content		
The device start number			
storing the data for			
average calculation		\quad Range	Data type
:---:	Data type (label)		

(N) | Number of data or the |
| :--- | :--- | :--- | :--- |
| device number storing |
| the number of data |$\quad 1$ to $32767 \quad$ Signed BIN 16 bit \quad ANY16

Device used

Features

Calculate the average value of the 16-bit data at (N) points starting from the device specified in (S) and store it in the device specified in (D).

The total is calculated from the algebraic sum and divided by (N).
The remainder is rounded off.

Error code

Error code	Content
4084 H	The data input by (N) in the application instruction exceeds the specifiable range. $\mathrm{N} \leq 0$
4085 H	When the device specified in the read application instructions (S) and (N) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction
	(D) exceeds the corresponding device range

Example

Add the data of D0, D1, and D2 and save the value obtained after dividing by 3 in D10. The calculated average value is 6 .

DMEAN/Mean value of 16-bit data

DMEAN(P)

Store the total number of bits at 1 in the BIN 32-bit data of the device specified in (S) to the device specified in (D). -[DMEAN (S) (D) (N)]

Content, range and data type

| Parameter | Content | Range | Data type |
| :---: | :--- | :--- | :--- | Data type (label)

Device used

Instrucfiamameter$\mathbf{K n}$	Devices											Offset Pulse modificatidension		
	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	[D]	XXP
$\underset{1}{\text { Parameter }}$	\bullet			\bullet	\bullet									
$\text { DMEA } \begin{gathered} \text { Parameter } \\ 2 \end{gathered}$	\bullet	\bullet	-	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet			\bullet	\bullet
${ }_{3}^{\text {Parameter }}$	\bullet	-												

Features

Calculate the mean value of BIN 32-bit data at (N) points starting from the device specified in (S) and store it in the device specified in (D).

The total is calculated from the algebraic sum and divided by (N).
The remainder is rounded off.
\#Note: When the device number exceeds, (N) is handled as a smaller value within the allowable range.
Error code

Error code	Content
4084 H	The data input in (N) exceeds the specifiable range. $\mathrm{N} \leq 0$
	When the device specified in the read application instructions
4085 H	(S) and (N) exceeds the corresponding device range
	When the device specified in the write application instruction
4086 H	(D) exceeds the corresponding device range

Example

Add the data of D0, D2, and D4, and save the value obtained after dividing by 3 in D10 and D11, and the calculated average value is 6 .

SQR/16-bit square root

SQR(P)

Calculate the square root of the BIN 16-bit data specified in (S), and store the calculation result in (D).

```
-[SQR (S) (D)]
```

Content, range and data type

Parameter	Content	Range	Data type	
(S)	The data device storing for square root calculation	0 to +32767	Signed BIN 16 bit	ANY16
(D)	The device storing the calculated square root	-	Signed BIN 16 bit	ANY16
Device used		Devices		Offset modification extension
Instruction Parameter				

SQR

	D	R	SD
Parameter 1	\bullet	\bullet	\bullet
Parameter 2	\bullet	\bullet	\bullet

K
\bullet

Parameter 2

Features

Calculate the square root of the BIN 16-bit data specified in (S), and store the calculation result in (D).

\#Note: The decimal point of operation result will be rounded off and become an integer. If rounding occurs, SM152 (borrow flag) turns ON.

When the operation result is really 0 , SM153 (zero flag) turns ON.

Error code

Error code	Content
4084 H	When a negative value is specified in (S).
4085 H	When the device specified in the read application instructions
	(S) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction
	(D) exceeds the corresponding device range

Example

The square root of $D 0$ is stored in $D 2$, and the value of $D 0$ is 100 , so the value of $D 2$ is 10 .

DSQR/32-bit square root

DSQR(P)

Calculate the square root of the BIN 32-bit data specified in (S), and store the calculation result in (D).
-[DSQR (S) (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The data device storing for square root calculation	0 to 2147483647	Signed BIN 32 bit	ANY32
(D)	The device storing the calculated square root	-	Signed BIN 32 bit	ANY32

Device used

InstructionParameter
Devices
Offset Pulse modificatiorextension

Features

Calculate the square root of the BIN 32-bit data specified in (S) and store the calculation result in (D).

$$
\sqrt{(\mathrm{s})+1, \quad(\mathrm{~s})} \rightarrow(\mathrm{d})+1, \quad(\mathrm{~d})
$$

\#Note: The decimal point of operation result will be rounded off and become an integer. If rounding occurs, SM152 (borrow flag) turns ON.

When the operation result is really 0 , SM153 (zero flag) turns on.

Error code

Error code	Content
4084 H	When a negative value is specified in (S).
4085 H	When the device specified in the read application instructions
	(S) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction
	(D) exceeds the corresponding device range

Example

$$
\left|\begin{array}{llll}
\mathrm{M1} & \text { [DMOV } & \text { K110 } & \mathrm{D} 0\} \\
\hline & \text { [DSQRP } & \text { DO } & \mathrm{D} 2\}
\end{array}\right|
$$

The square root of $D 0$ is stored in $D 2$, and the value of $D 0$ is 110 , so the value in the $D 2$ soft component is 10 (the fractional part is discarded), and the borrow flag SM152 is turned ON.

WSUM/The sum value of 16 -bit data

WSUM(P)

After adding all the BIN 16-bit data of point starting from the device specified in (S), it is stored in the device specified in (D).
-[WSUM (S) (D) (N)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The device start number storing the data for sum value calculation	-	Signed BIN 16 bit	ANY 16
(D)	The device start number storing the sum value	-	Signed BIN 32 bit	ANY 32
(N)	Number of data	-	Signed BIN 16 bit	ANY 16

Device used

Features

After adding all the BIN 16-bit data of point (N) starting from the device specified in (S), it is stored in the device specified in (D).

Error code

Error code
4084 H
4085 H

4086 H

Content

When a negative value is specified in (N).
When the device specified in the read application instructions (S) and (N) exceeds the corresponding device range
When the device specified in the write application instruction (D) exceeds the corresponding device range

Example

		[MOV	K5	D0
		[MOV	K6	D1
		[MOV	K7	D2
	[WSUM	D0	D100	K3

When $\mathrm{M} 0=\mathrm{ON}$, the total of 16 -bit data of D 0 to D 2 is saved in [D100, D101], and the accounting result is 18 .

DWSUM/The sum value of 32-bit data

DWSUM(P)

Add all the 32-bit BIN data of point (N) starting from the device specified in (S) and store it in the device specified in (D).
-[DWSUM (S) (D) (N)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The device start number storing the data for total value calculation	-	Signed BIN 32 bit	ANY32
(D)	The device start number storing the total value	-	Signed BIN64 bit	ANY64
(N)	Number of data	-	Signed BIN 32 bit	ANY32

Device used

Features

Add all the 32-bit BIN data of point starting from the device specified in (s) and store it in the device specified in (d).

\#Note: When the number of bits is specified in (D), the value of n ranges from 1 to 8 , such as K8 (32-bit instructions, such as K8M0) without K16 (64-bit instructions).

Error code

Error code
4084 H
4085 H

Content

When a negative value is specified in (N).
When the device specified in the read application instructions (S) and (N) exceeds the corresponding device range

When the device specified in the write application instruction
(D) exceeds the corresponding device range

Example

		[DMOV	K5	D0]
		[DMOV	K6	D2]
		[DMOV	K7	D4]
	[DWSUM	D0	D100	K3

When $\mathrm{M} 0=\mathrm{ON}$, the total of 16 -bit data of D 0 to D 2 is saved in [D100, D101], and the accounting result is 18 .

SORT/16-bit data sorting

SORT

Sort the data rows in ascending order based on the group data of column (N3) in the BIN 16-bit data table (sorting source) of $(\mathrm{N} 1 \times \mathrm{N} 2)$ points specified in (S) and store them in the specified in (D) $(\mathrm{N} 1 \times \mathrm{N} 2)$ points in the BIN 16-bit data table (after sorting).
-[SORT (S) (N1) (N2) (D) (N3)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The start device number storing the data table	-	Signed BIN 16 bit	ANY16
(N1)	Number of data (rows) (N2)Number of group data (columns)	1 to 32	Signed BIN 16 bit	ANY16
(D)	The start device number storing the operation result	-	Signed BIN 16 bit	ANY16
(N3)	The column number of the group data (column) as the sorting basis	-	Signed BIN 16 bit	ANY16

Device used

Features

The BIN 16-bit data table (sorting source) of $(\mathrm{N} 1 \times \mathrm{N} 2)$ points specified in (S), based on the group data of column (N3), sort the data rows in ascending order, and store them in (D). The (N1×N2) point of the BIN 16-bit data table (after sorting).

Take (N1)=K3, (N2)=K4 in the sort source as an example, the data table structure is as follows. In the case of a sorted data table, (S) should be replaced with (D).

Data alignment starts when instruction input is ON, data alignment ends after (N1) scan, instruction execution end flag SM229 is set to ON. According to the source data sorted as follows, an example of the operation is shown below. In addition, by putting serial numbers such as management numbers in the first column in advance, the original row number can be judged based on the content, which is very convenient.

		Number of groups (N2) ((N2)=K4)			
		Column NO. 1	Column NO. 2	Column NO. 3	Column NO. 4
		Management number	Height	Weight	Age
When the number of data (N 1) $=5$	Line NO. 1	(S)	(S) +5	(S) +10	(S) +15
		1	150	45	20
	Line NO. 2	(S) +1	(S) +6	(S) +11	(S) +16
		2	180	50	40
	Line NO. 3	(S)+2	(S) +7	(S) +12	(S) +17
		3	160	70	30
	Line NO. 4	(S) +3	(S) +8	(S) +13	(S) +18
		4	100	20	8
	Line NO. 5	(S) +4	(S) +9	(S) +14	(S) +19
		5	150	50	45

Press (N3)=K2 (column number 2) to execute the sorting result.

		Number of groups (N2) ((N2)=K4)			
		Column NO. 1	Column NO. 2	Column NO. 3	Column NO. 4
		Management number	Height	Weight	Age
When the number of data (N 1) $=5$	Line NO. 1	(D)	(D) +5	(D) +10	(D) +15
		4	100	20	8
	Line NO. 2	(D) +1	(D) +6	(D) +11	(D) +16
		1	150	45	20
	Line NO. 3	(D) +2	(D) +7	(D) +12	(D) +17
		5	150	50	45
	Line NO. 4	(D) +3	(D) +8	(D) +13	(D) +18
		3	160	70	30
	Line NO. 5	(D) +4	(D) +9	(D) +14	(D) +19
		2	180	50	40

Press (N3)=K3 (column number 3) to execute the sorting result.

		Number of groups (N2) ((N2)=K4)			
		Column NO. 1	Column NO. 2	Column NO. 3	Column NO. 4
		Management number	Height	Weight	Age
When the number of data (N 1) $=5$	Line NO. 1	(D)	(D) +5	(D) +10	(D) +15
		4	100	20	8
	Line NO. 2	(D) +1	(D) +6	(D) +11	(D) +16
		1	150	45	20
	Line NO. 3	(D) +2	(D) +7	(D) +12	(D) +17
		2	180	50	40
	Line NO. 4	(D) +3	(D) +8	(D) +13	($\mathrm{D}+18$
		5	150	50	45
	Line NO. 5	(D) +4	(D) +9	(D) +14	(D) +19
		3	160	70	30

\#Note: only ascending order is supported by SORT instruction .
Do not change the operand and data content during operation.
When executing again, the instruction input should be turned OFF once.
SORT instruction can drive at most one in the program.
When the same device is specified in (S) and (D), the source data is rewritten to the sorted data order. Please pay special attention not to change the content of (S) before the end of execution.

Error code

Error code	Content
	When the value specified in (N1) exceeds the range of 1 to 32
4084H	When the value specified in (N2) exceeds the range of 1 to 6
	When the value specified in (N3) exceeds the range of 1 to n2
4085H	When the device specified in read application instruction (S), (N1), (N2)and (N3) exceeds the corresponding device range
4086H	When the device specified in the write application instruction (D) exceeds the corresponding device range
4087H	When the (D) parameter in the application instruction uses an unsupported device
4089H	The number of application instructions exceeds the limit.

Example

Refer to the function description example.

SORT2/16-bit data sorting

SORT2(P)

Sort the data rows in ascending or descending order based on the group data in column (N3), and store them in (D), based on the BIN 16-bit data table (sorting source) of ($\mathrm{N} 1 \times \mathrm{N} 2$) points specified in (S) In the BIN 16-bit data table (after sorting) of the specified $(\mathrm{N} 1 \times \mathrm{N} 2)$ points.

```
-[SORT2 (S) (N1) (N2) (D) (N3)]
```

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The start device number storing the data table	-	Signed BIN 16 bit	ANY16
(N1)	Number of data (rows)	1 to 32	Signed BIN 16 bit	ANY16
(N2)	Number of group data (columns)	1 to 6	Signed BIN 16 bit	ANY16
(D)	The start device number storing the operation result	-	Signed BIN 16 bit	ANY16
(N3)	The column number of the group data (column) as the sorting basis	-	Signed BIN 16 bit	ANY16

Device used

Features

Sort the data rows in ascending or descending order based on the group data in column (N3) and store them in (D) ($\mathrm{N} 1 \times \mathrm{N} 2$) point specified in the BIN 16-bit data table (after sorting).

Take (N1)=K3, (N2)=K4 in the sort source as an example, the data table structure is as follows. In the case of a sorted data table, (S) should be replaced with (D).

When the number of groups (N2) (N2) = K4

	Column NO.1 Management number	Column NO.2	Column NO.3	Column NO.4	
When the number	Line NO.1	(S)	Weight	Age	
of data $($ N1 $)=3$	Line NO.2	(S) +4	$(\mathrm{~S})+1$	$(\mathrm{~S})+2$	$(\mathrm{~S})+3$
	Line NO.3	$(\mathrm{S})+8$	$(\mathrm{~S})+5$	$(\mathrm{~S})+6$	$(\mathrm{~S})+7$
		$(\mathrm{~S})+9$	$(\mathrm{~S})+10$	$(\mathrm{~S})+100$	

Sequence is set by the ON/OFF status of SM165

	Sort order setting instruction
SM165=ON	Descending
SM165=OFF	Ascending

Data alignment starts when instruction input is ON, data alignment ends after (N1) scan, instruction execution end flag SM229 is set to ON.

According to the source data sorted as follows, an example of the operation is shown below. In addition, by putting serial numbers such as management numbers in the first column in advance, the original row number can be judged based on the content, which is very convenient.

When the number of groups (N2) (N2) = K4

		Column NO. 1	Column NO. 2	Column NO. 3	Column NO. 4
		Management number	Height	Weight	Age
When the number of data (N1) $=5$	Line NO. 1	(S)	(S) +1	(S) +2	(S) +3
		1	150	45	20
	Line NO. 2	(S) +4	(S) +5	(S) +6	(S) +7
		2	180	50	40
	Line NO. 3	(S) +8	(S) +9	(S) +10	(S) +100
		3	160	70	30
	Line NO. 4	(S) +12	(S) +13	(S) +14	(S) +15
		4	100	20	8
	Line NO. 5	(S) +16	(S) +17	(S) +18	(S) +19
		5	150	50	45

Press (N3)=K2 (column number 2) to execute the sorting result (SM165=OFF in the case of ascending order)

| | When the number of groups (N2) (N2) = K4
 Column NO.1
 Column NO.2 | | | | Column NO.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | Column NO.4

Press (N3)=K3 (column number 3) to execute the sorting result (SM165=ON in the case of ascending order)
When the number of groups (N2) (N2) = K4

Column NO.1	Column NO.2	Column NO.3	Column NO.4
Management	Height	Weight	Age

	(D)	(D) +1	(D) +2	(D) +3
Line NO.1	3	160	70	30
	(D) +4	(D) +5	(D) +6	(D) +7
Line NO. 2	2	180	50	40
	(D) +8	(D) +9	(D) +10	(D) +100
Line NO.3	5	150	50	45
Line NO.4	(D) +12	(D) +13	(D) +14	(D) +15

Line NO. 5

$$
\text { (D) }+16
$$

4

150
(D) +17

100

45
20
(D) +18

20
(D) +19 8
\#Note: Do not change the operand and data content during operation.
When executing again, the instruction input should be turned OFF once.
The SORT2 instruction can only be written in the program to drive 2 at most.
When the same device is specified in (S) and (D), the source data is rewritten to the sorted data order. Please pay special attention not to change the content of (S) before the end of execution.

Do not overlap the source data and the sorted data.

Error code

Error code	Content
	When the value specified in (N1) exceeds the range of 1 to 32
4084H	When the value specified in (N 2$)$ exceeds the range of 1 to 6
	When the value specified in (N3) exceeds the range of 1 to n 2
4085H	When the device specified in read application instruction (S), (D), (N1), (N2)and (N3) exceeds the corresponding device range

4086H
4089H

When the device specified in the write application instruction
(D) exceeds the corresponding device range

The number of application instructions exceeded the limit.

Example

Refer to the function description example.

DSORT2/32-bit data sorting

DSORT2(P)

Sort the data rows in ascending or descending order based on the group data of column (N3) in the BIN 32-bit data table (sorting source) of $(\mathrm{N} 1 \times \mathrm{N} 2)$ points specified in (S) and store them in (D) The specified ($\mathrm{N} 1 \times \mathrm{N} 2$) point BIN 32-bit data table (after sorting).
-[DSORT2 (S) (N1) (N2) (D) (N3)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The start device number storing the data table	-	Signed BIN 32 bit	ANY32
(N1)	Number of data (rows) (N2)Number of group data (columns)	1 to 32	Signed BIN 32 bit	ANY32
(D)	The start device number storing the operation result	-	Signed BIN 32 bit	ANY32
(N3)	The column number of the group data (column) as the sorting basis	-	Signed BIN 32 bit	ANY32

Device used

InstrucRanameter	Devices											Offset Pulse modificadidension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	[D]	XXP
Parameter 1				\bullet			-							
$\begin{aligned} & \text { Parameter } \end{aligned}$	\bullet	-	\bullet											
$\begin{gathered} \text { DSORT2ameter } \\ 3 \end{gathered}$	\bullet	-	\bullet	\bullet	\bullet									
Parameter 4				\bullet			\bullet							

Parameter

5

Features

Sort the data rows in ascending or descending order based on the group data in the (N3) column of the ($\mathrm{N} 1 \times \mathrm{N} 2$) point BIN 32-bit data table (sorting source) specified in (S), and store to (d) ($\mathrm{N} 1 \times \mathrm{N} 2$) specified in the BIN 32-bit data table (after sorting).

Take (N1)=K3, (N2)=K4 in the sort source as an example, the data table structure is as follows. In the case of a sorted data table, (S) should be replaced with (D).

Sequence is set by the ON/OFF status of SM165
Sort order setting instructions
SM165=ON
Descending
Ascending
Data alignment starts when instruction input is ON, data alignment ends after (n1) scan, instruction execution end flag SM229 is set to ON.

According to the source data sorted as follows, an example of the operation is shown below. In addition, by putting serial numbers such as management numbers in the first column in advance, the original row number can be judged based on the content, which is very convenient.

		When the number of groups (N2) (N2) = K4			
		Column NO. 1	Column NO. 2	Column NO. 3	Column NO. 4
		Management number	height	body weight	age
	Line NO. 1	(S)+1, (S)	(S)+3, (S)+2	(S)+5, (S)+4	(S) +7, (S) +6
		1	150	45	20
	Line NO 2	(S) $+9,(\mathrm{~S})+8$	(S)+11, (S)+10	(S) $+13,(\mathrm{~S})+12$	$(\mathrm{S})+15,(\mathrm{~S})+14$
	Line NO. 2	2	180	50	40
When the number of data (N 1) $=5$		(S) $+17,(\mathrm{~S})+16$	(S) $+19,(\mathrm{~S})+18$	(S) $+21,(\mathrm{~S})+20$	(S) +23, (S) +22
	Line NO. 3	3	160	70	30
	Line NO. 4	(S) $+25,(\mathrm{~S})+24$	(S) +27, (S) +26	(S) $+29,(\mathrm{~S})+28$	(S) $+31,(\mathrm{~S})+30$
		4	100	20	8
	Line NO. 5	(S) $+33,(\mathrm{~S})+32$	(S) $+35,(\mathrm{~S})+34$	(S) $+37,(\mathrm{~S})+36$	(S) $+39,(\mathrm{~S})+38$
		5	150	50	45

Press (N3)=K2 (column NO.2) to execute the sorting result (SM165=OFF in the case of ascending order)
When the number of groups (N2) (N2) = K4

	Column NO.1 Management number	Column NO.2	Column NO.3	Column NO.4	
height	body weight	age			
When the number of data $(\mathrm{N} 1)=5$	Line NO.1	(S) $+1,(\mathrm{~S})$	$(\mathrm{S})+3,(\mathrm{~S})+2$	$(\mathrm{~S})+5,(\mathrm{~S})+4$	(S) +7 , (S) +6
	4	100	20	8	

	$(\mathrm{S})+9,(\mathrm{~S})+8$	$(\mathrm{~S})+11,(\mathrm{~S})+10$	$(\mathrm{~S})+13,(\mathrm{~S})+12$	$(\mathrm{~S})+15,(\mathrm{~S})+14$
Line NO. 2	1	150	45	20
	$(\mathrm{~S})+17,(\mathrm{~S})+16$	$(\mathrm{~S})+19,(\mathrm{~S})+18$	$(\mathrm{~S})+21,(\mathrm{~S})+20$	$(\mathrm{~S})+23,(\mathrm{~S})+22$
Line NO.3	5	150	50	45
	$(\mathrm{~S})+25,(\mathrm{~S})+24$	$(\mathrm{~S})+27,(\mathrm{~S})+26$	$(\mathrm{~S})+29,(\mathrm{~S})+28$	$(\mathrm{~S})+31,(\mathrm{~S})+30$
Line NO.4	3	160	70	30
	$(\mathrm{~S})+33,(\mathrm{~S})+32$	$(\mathrm{~S})+35,(\mathrm{~S})+34$	$(\mathrm{~S})+37,(\mathrm{~S})+36$	$(\mathrm{~S})+39,(\mathrm{~S})+38$
Line NO. 5	2	180	50	40

Press (N3)=K3 (column NO.3) to execute the sorting result (SM165=ON in the case of ascending order)

		When the number of groups (N2) (N2) = K4			
		Column NO. 1	Column N0. 2	Column NO. 3	Column NO. 4
		Management number	height	body weight	age
When the number of data $(\mathrm{N} 1)=5$	Line NO. 1	(S)+1, (S)	(S)+3, (S)+2	(S) $+5,(\mathrm{~S})+4$	(S) +7, (S) +6
		3	160	70	30
	Line NO. 2	(S) $+9,(\mathrm{~S})+8$	(S)+11, (S)+10	(S) $+13,(\mathrm{~S})+12$	(S) $+15,(\mathrm{~S})+14$
		2	180	50	40
	Line NO. 3	(S) +17, (S) +16	$(\mathrm{S})+19,(\mathrm{~S})+18$	(S) $+21,(\mathrm{~S})+20$	(S) $+23,(\mathrm{~S})+22$
		5	150	50	45
	Line NO. 4	(S) $+25,(\mathrm{~S})+24$	(S) $+27,(\mathrm{~S})+26$	(S) $+29,(\mathrm{~S})+28$	(S) +31, (S) +30
		1	150	45	20
	Line NO. 5	(S) $+33,(\mathrm{~S})+32$	(S) +35 , (S) +34	(S) +37, (S) +36	(S) +39 , (S) +38
		4	100	20	8

\#Note: Do not change the operand and data content during operation.
When executing again, the instruction input should be turned OFF once.
The SORT2 instruction can only be written twice in the program.
When the same device is specified in (S) and (D), the source data is rewritten to the sorted data order. Please pay special attention not to change the content of (S) before the end of execution.

Do not overlap the source data and the sorted data.

Error code

Error code	Content
	When the value specified in (N1) exceeds the range of 1 to 32
4084H	When the value specified in (N2) exceeds the range of 1 to 6
	When the value specified in (N3) exceeds the range of 1 to n 2
4085H	When the device specified in read application instruction (S), (D), (N1), (N2)and (N3) exceeds the corresponding device range
4086H	When the device specified in the write application instruction (D) exceeds the corresponding device range
4089H	The number of application instructions exceeded the limit.

Example

Refer to the function description example.

SWAP/16-bit data high and low byte swap

SWAP(P)

Swap the high and low 8-bit value of the device specified in (D).
-[SWAP (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	Word device with high	-	Signed BIN 16 bit	ANY16

Device used

InstructiolParameter	Devices								Offset Pulse modificatioextension	
	KnY	KnM	KnS	T	C	D	R	SD	[D]	XXP
SWAP $\begin{gathered}\text { Parameter } \\ 1\end{gathered}$	\bullet	-	-							

Features
Convert the high and low 8-bit value of the device specified in (D).

Error code

Error code
4085H

4086H

Content

When the device specified in the read application instruction (D) exceeds the corresponding device range

When the device specified in the write application instruction (D) exceeds the corresponding device range

Example

When the rising edge of $M 0$ is triggered, swap the low 8 bits and high 8 bits of $D 0$ to get H8F2A.

DSWAP/32-bit data high and low byte swap

DSWAP(P)

The devices specified in (D) and (D)+1 will be converted to the high and low 8-bit values respectively.

```
-[DSWAP (D)]
```

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	Word device with high	-	Signed BIN 32 bit	ANY32

Device used

Instructi¢rarameter		Devices								Offset Pulse modificatiextension		
	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	[D]	XXP
DSWAP Parameter	\bullet											

Features

The devices specified in (D) and (D)+1 will be converted to the upper and lower 8-bit values respectively.

\#Note: If continuous execution instructions are used, conversion will be performed every scan cycle.
Error code

Error code
4085H

Content

When the device specified in the read application instruction (D) exceeds the corresponding device range

When the device specified in the write application instruction (D) exceeds the corresponding device range

Example

When the rising edge of M 0 is triggered, the low 8 bits and the high 8 bits of D 0 and D 1 are swapped, and $\mathrm{D} 0=\mathrm{H} 8 \mathrm{~F} 2 \mathrm{~A}, \mathrm{D} 1=\mathrm{H} 3412$ are obtained.

Devices	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F		\wedge
D0	0	1	0	1	0	1	0	0	1	1	1	1	0	0	0	1	8F2A	
D1	0	1	0	0	1	0	0	0	0	0	1	0	1	1	0	0	3412	
D2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000	

BTOW/Byte unit data merge

BTOW(P)

Combine the low 8 bits of (N) bytes of BIN 16-bit data stored after the device number specified in (S) into word units and store it after the device number specified in (D).

```
-[BTOW (S) (D) (N)]
```

Content, range and data type

Parameter	Content The start device that stores the data merging in byte units	Range	Data type	Data type (label)
(S)	-	Signed BIN 16 bit	ANY16	
(D)	The start device that stores the result of merging in byte units	-	Signed BIN 16 bit	ANY16
(N)	Number of byte data merged	$0-32767$	Signed BIN 16 bit	ANY16

Device used

Features

After the device number specified in (s), the lower 8 bits of the 16 -bit BIN data stored in bytes are combined into word units and stored in the device number specified in (d) or later.

The upper 8 bits of word data stored after the device number specified in (s) will be ignored. In addition, when is an odd number, 0 is stored in the upper 8 bits of the device storing the th byte of data.

£: the £th byte data;
(1): Ignore the high byte
*1: Carry below the decimal point.

Example

When $(N)=5$, the data up to the lower 8 bits of $(S)+(S)+4$ is stored in $(D)+(D)+2$.

(1): When $(N)=5$
(2): Change to 00 H

By setting the number of bytes in (N), the range of byte data specified in (S) and the range of the device storing the combined data specified in (D) will be automatically determined.

When the number of bytes specified in (N) is 0 , no processing is performed.
The upper 8 bits of the byte data storage device specified in (S) will be ignored, and the lower 8 bits will be the target.

Example

When the low 8 bits of D11 to D16 is stored in D12 to D14.

Even if the device range storing the data before merging overlaps the device rangestoring merged data, it will be handled as normal.

Device range storing the data before merging

(S) +0 to (S) $+(\mathrm{N})-1$

Device range for storing merged data
(D) to (D) $+(\mathrm{N} / 2-1)$

Error code

Error code

4084H
4085H

Content

The value specified in (N) exceed range of 0 to 32767
When the device specified in the write application instruction (S),(D) and (N) exceeds the corresponding device range

Example

	[MOV	H78	D20]
	$[\mathrm{MOV}$	H3112	D21]
	[MOV	H3649	D22]
	$[\mathrm{MOV}$	H4455	D23]
	$[\mathrm{MOV}$	H2867	D24]
	$[\mathrm{MOV}$	H4931	D25]
[BTOW	D20	D10	K6]

When M0 is ON, the data of D20 to D25 is separated according to byte units, and then stored in D10 to D12.

WTOB/Byte unit data separation

WTOB(P)

After separating the BIN 16-bit data stored after the device number specified in (S) into (N) bytes, store it after the device number specified in (D).
-[WTOB (S) (D) (N)]

Content, range and data type

Parameter	Content (S)	Range That start device the data separation in byte unit	-	Data type Signed BIN 16 bit
(D)	The start device that stores the result of separation in byte unit	-	Signed BIN 16 bit	ANY16
ANY16				

Device used

InstructionParameterDevices

Features

After separating the BIN 16-bit data stored after the device number specified in (S) into (N) bytes, store it after the device number specified in (D).

1. High byte;
2. Low byte;
3. High byte data;
4. Low byte data;
5. *1: Carry below the decimal point.

Example

In the case of $(N)=5$, store the data up to the lower 8 bits of (S) to $(S)+2$ in (D) to (D) +4 :

1. $(N)=5$ is ignored.
2. $(N)=5$.

By setting the number of bytes in (N), the range of BIN 16 -bit data specified in (S) and the range of the device storing the byte data specified in (D) will be automatically determined.

When the number of bytes specified in (N) is 0 , no processing is performed.
00 H is automatically stored in the upper 8 bits of the byte data storage device specified in (D).

Example

When D12 to D14 is stored in the low 8 bits of D11 to D16

Even if the device range storing the data before merging overlaps the device rangestoring merged data, it will be handled as normal.

Device range storing the data before merging

(S) to (S) $+(\mathrm{N} / 2-1)$

Device range storing separated data

(D) +0 to (D) $+(\mathrm{N})-1$

Error code

Error code
4084H
4085H
4086H

Content

The value specified by (N) exceed the range of 0 to 32767
When the device specified in read application instruction (S) and (N) exceeds the corresponding device range
When the device specified in the write application instruction (D) exceeds the corresponding device range

Example

When M0 is ON, the data of D10 to D12 are separated according to byte units, and then stored in D20 to D25.

DIS/4-bit separation of 16-bit data

DIS(P)

Store the data of the low (N) bits (1 bit of 4 bits) of the BIN 16-bit data specified in (S) into the low 4 -bit of the (N) point starting from the device specified in (D).
-[DIS (S) (D) (N)]
Content, range and data type

Parameter(S)	Content			Range			Data type			Data type (label)		
	The start device storing the data before separation			-			Signed BIN 16 bit			ANY16		
(D)	The start device storing separated data			-			Signed BIN 16 bit			ANY16		
(N)	Separation number (0 means no processing)			0-4			Signed BIN 16 bit			ANY16		
Device used												
InstructRaramemices				T	C	D	R		K	Offset Pulse modificatidension		
KnX	KnY	KnM	KnS					SD		H	[D]	XXP
DIS Paramet 1		-	-	-	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet
Parameter 2				-	\bullet	\bullet	\bullet	\bullet			\bullet	-
Paramet 3	-	\bullet										

Features

Store the low-(N) bit (1 bits of 4 bits) of the BIN 16-bit data specified in (S) in the low 4-bit of the (N) point starting from the device specified in (D).

The hig-12 bit of the point (N) starting from the device specified in (S) will become 0 .
When $(N)=0$, it will become no processing, and the content of point (N) starting from the device of (D) will not change.

Error code

Error code

4084H
4085H

4086H

Content

The data in (N) exceed the range of 0 to 4
When the device specified in read application instruction (S) and (N) exceeds the corresponding device range
When the device specified in the write application instruction (D) exceeds the corresponding device range

Example

When M0 is ON, D0 is separated every 4 bits and stored in D10 to D12. The result is D10 $=H F, D 11=H 8, D 12=$ HA.

UNI/4-bit combination of 16-bit data

UNI(P)

Combine the low 4 bits of the BIN 16-bit data of point (N) starting from the device specified in (S) into the BIN 16bit device specified in (D).
-[UNI (S) (D) (N)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The start device storing the data before merging	Signed BIN 16 bit	ANY16	
(D)	The start device storing the merged data	Signed BIN 16 bit	ANY16	
(N)	Number of merger	$0-4$	Signed BIN 16 bit	ANY16

Device used

Features

Combine the low 4 bits of the BIN 16-bit data at point (N) starting from the device specified in (S) into the BIN 16bit device specified in (D).

The high (4-N) bits of the device specified in (D) will become 0 .
When $(N)=0$, it will become no processing, and the content of the device in (D) will not change.

Error code

Code

4084H
4085H

4086H

Content

The data in (N) exceed the range of 0 to 4
When the device specified in read application instruction (S) and (N) exceeds the corresponding device range
When the device specified in the write application instruction (D) exceeds the corresponding device range

Example

When M0 is ON, the low 4 bits of D0 to D3 are combined and stored in D10, the value is H236F.

ZRST/Data batch reset

ZRST(P)

Perform a batch reset between the devices specified in (d1) and (d2) of the same type. It is used when interrupting operation, performing initial operation, or resetting control data.

```
-[ZRST (d1) (d2)]
```

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)		
(d1)	The start bit or word device number of batch reset	-	Bit/Signed BIN 16 bit			ANY_ELEMENTARY
:---						

Device used

Instruetiampaterices OffsetPulse

Features

Perform batch reset between the devices specified in (d1) and (d2) of the same type.
When (d1) and (d2) are bit devices, write OFF (reset) in the entire device range of (d1) to (d2).

When (d1) and (d2) are word devices, write K0 in the entire device range of (d1) to (d2).

As a separate reset instruction for the device, the RST instruction can be used for bit devices or word devices.

Reset M0

Reset D0

Reset the current value of TO

The batch write instruction of constant (for example: K0) has FMOV (P) instruction, which can write 0 to word devices (including bit device specification).

Write K0 in D0 to D99.

\#Note: Please specify the same type number for (d1) and (d2), and make (d1) number <(d2) number. When (d1) number \geq (d2) number, only 1 point will be reset for the device specified in (d1).

ZRST(P) instruction is a 16-bit instruction, which can specify (LC) and (HSC) devices for (d1) and (d2).

Error code

Error code

4084H
4085H

4086H

Content

When the device type specified in (d1) is different from the device type specified in (d2).
When the device specified in the read application instruction (d1) and (d2) exceeds the corresponding device range
When the device specified in the write application instruction (d1) exceeds the corresponding device range

Example

The function of this Circuit program instruction is to set the value of the D0 to D100 device to 0 .

ZSET/Data batch set

ZSET(P)

Perform a batch set between the devices specified in (d1) and (d2) of the same type.

Content, range and data type

Parameter	Content	Range	Data type	Data type(label)
(d1)	The start bit device number of batch set	-	Bit	ANY_BOOL
(d2)	The final bit device number of batch set	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices			Offset modification		
		Y	M	S	SM	D.b	[D]
ZSET	Parameter 1	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
	Parameter 2	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet

Features

-Perform a batch set between the devices specified in (d1) and (d2) of the same type.
.Write ON (set) in the entire device range of (d1) to (d2)

-As a separate set instruction for the device, the SET instruction can be used for bit devices.
Set M1
Set Y1
Set S1

\#Note: Please specify the same type number for (d1) and (d2), and make (d1) number < (d2) number. When (d1) number \geq (d2) number, only 1 point will be set for the device specified in (d1).

Error code

Error code

4084H

4085H

4086H

4087H

Content

When the device type specified in (d1) is different from the device type specified in (d2).
When the device specified in the read application instruction (d1) and (d2) exceeds the corresponding device range
When the device specified in the write application instruction (d1) exceeds the corresponding device range
When the device type specified in (d1) and (d2) are not bit device.

Example

The function of this LAD instruction is to set the value of the M1 to M4 device to ON.

CRC/cyclic redundancy check instruction

CRC(P)

Calculate the CRC (Cyclic Redundancy Check) value, which is one of the error checking methods used in communications. In addition to CRC, error checking methods include parity and

Sum check (checksum), calculate horizontal parity check value and sum check value can use $C C D(P)$ instruction. And this instruction is used in the generator polynomial that generates the CRC value (CRC-16)
"X $16+X 15+X 2+1 "$.
$-[C R C(P)(S)(D)(N)]$

Content, range and data type

Cordereter

(IS)e device start number storing the data of CRC value generated objects
$(\mathbb{I B}) \mathrm{d})$ destination device number of the generated CRC value
(TNX) number of 8-bit data (bytes) for calculating the CRC value or the number of the device storing the number of data

Device used

Instruction	Parameter	Devices KnX
CRC	Parameter 1	\bullet
	Parameter 2	
	Parameter 3	\bullet

Features

Start with the device specified in (S), generate the CRC value of 8-bit data (byte unit) at (N) point, and store it in (D).

The mode used by this instruction in calculation includes 16 -bit conversion mode and 8 -bit conversion mode. For the operation of each mode, please refer to the following content.

1. 16-bit conversion mode (when SM161=OFF)

Calculate the upper 8 bits (byte) and lower 8 bits (byte) of the (S) device. The result is stored in 16 bits of 1 point of the device specified in (D). In the case of the following program, perform the conversion as shown below.

		Example (s)=D100, (d)=D0,		
		Devices	Content of object data CRC value generation target data storage destination	(s)
	(s) +1	Low byte	D100 low	01 H

2. 8-bit conversion mode (when SM8161=ON)

In 8-bit conversion mode, only the lower 8 bits (lower byte) of the (s) device are operated on. As a result, 2 points are used starting from the device specified in (d), the lower 8 bits (bytes) are stored in (d), and the upper 8 bits (bytes) are stored in (d) +1 .

In the case of the following program, perform the conversion as shown below.

8 bit conversion mode

		Devices	Content of object data	
CRC value generation target data storage (s) (s) +1	Low byte	D100 low	01 H	
destination	$(\mathrm{s})+2$	Low byte	D101 low	03 H
	$(\mathrm{s})+3$	Low byte	D102 low	03 H
	$(\mathrm{s})+4$	Low byte	D103 low	02 H
	$(\mathrm{s})+5$	Low byte	D104 low	00 H
	\ldots	D105 low	14 H	
	$(\mathrm{S})+(\mathrm{N})-1$	Low byte	$\#$	
CRC value storage	(d)	Low byte	D0	E4H
target	Low byte +1	D1	41 H	

In the $C R C(P)$ instruction, the generator polynomial of the CRC value (CRC-16) uses "X16+X15+X2+1", but there are also many standardized generator polynomials for the CRC value. If the generator polynomial is different, it will become a completely different CRC value, which should be noted. The main CRC value generator polynomials are shown below.

Name

CRC-12
CRC-16
CRC-32

CRC-CCITT

Generator polynomial

$X^{12}+X^{11}+X^{3}+X^{2}+X+1$
$X^{16}+X^{15}+x^{2}+1$
$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x$
+1
$x^{16}+x^{12}+x^{5}+1$
\#Note:
When (s1) use $\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}, \mathrm{KnS}$, n must be specified as 4 .

Error code

Error code

4084H
4085H
4086H
4087H

Content

The range of (N) exceeds 1 to 256
The data address of (S) to be converted exceeds the device range
The (D) write address exceeds the device range
Unsupported device type is used by (S) and (D)

Example

1. 16-bit conversion mode

After MO is turned ON, D0 $=41 \mathrm{E} 4 \mathrm{H}$
2. 8-bit conversion mode

