06 High-speed input counter
last modified by Stone Stone
on 2022/06/15 11:52

Table of Contents

Specifications of high-speed counter 3
Types of high-speed counters 3
Highest frequency 6
High-speed counter allocation 6
High-speed counter use steps 8
High-speed counter instructions 10
OUT HSC/High-speed counter switch 10
DHSCS/High-speed comparison set 11
DHSCR/High-speed comparison reset 13
DHSZ/High-speed zone comparison 15

Specifications of high-speed counter

Types of high-speed counters

(1) Single-phase input counter (S/W)

The counting method of single-phase input counter (S/W) is as follows:

(2) AB phase input counter [1 times frequency]

The counting method of $A B$ phase input counter [1 times frequency] is as follows:

Increase/decrease action

When counting up

When counting down

Timing

Phase A input is ON and phase B input is $\mathrm{OFF} \rightarrow \mathrm{ON}$, the count will increase by 1
When the A phase input is ON and the B phase input is ON \rightarrow OFF, the count will decrease by 1

When counting up When counting down

(3) AB phase input counter [2 times frequency]

The counting method of 2-phase 2-input counter [2 times frequency] is as follows:

Increase/decrease action
When counting up

When counting down

Timing
When the A phase input is ON and the B phase input is $\mathrm{OFF} \rightarrow \mathrm{ON}$, the count will increase by 1 ;

The count will increase by 1 when the phase A input is OFF and the phase B input is $O N \rightarrow O F F$.
When A phase input is ON and B phase input is $\mathrm{ON} \rightarrow \mathrm{OFF}$, the count will decrease by 1 ;

When phase A input is OFF and phase B input changes from $\mathrm{OFF} \rightarrow \mathrm{ON}$, the count will decrement by 1 .

When counting up When counting down
B phase input

(4) AB phase input counter [4 times frequency]

The counting method of 2-phase 2-input counter [4 times frequency] is as follows:

Increase/decrease action
When counting up

When counting down

Timing
When B phase input is OFF and A phase input is OFF $\rightarrow \mathrm{ON}$, the count will increase by 1 ;

When the A phase input is ON and the B phase input is $\mathrm{OFF} \rightarrow \mathrm{ON}$, the count will increase by 1 ;

When B phase input is ON and A phase input is $\mathrm{ON} \rightarrow \mathrm{OFF}$, the count will increase by 1 ;

The count will increase by 1 when the phase A input is OFF and the phase B input is $O N \rightarrow O F F$.
When A phase input is OFF and B phase input is OFF $\rightarrow O N$, the count will decrease by 1 ;

When B phase input is ON and A phase input is $\mathrm{OFF} \rightarrow \mathrm{ON}$, the count will decrease by 1 ;

When A phase input is ON and B phase input is $\mathrm{ON} \rightarrow \mathrm{OFF}$, the count will decrease by 1 ;

When Phase B input is OFF and Phase A input is ON \rightarrow OFF, the count will decrement by 1 .

When counting up When counting down

Highest frequency

The maximum countable frequency of various high-speed counters is as follows:

Counter type

Single phase input counter (S/W)
$A B$ phase input counter [1 times frequency]
$A B$ phase input counter [2 times frequency]
$A B$ phase input counter [4 times frequency]

Highest frequency
150 KHz
100 KHz
100 KHz
100 KHz

Counting range: -2147483648 to 2147483647 , which is a signed 32 -bit ring counter.

High-speed counter allocation

The input soft components of various types of high-speed counters are fixedly allocated, including 8 channels HSC0 to HSC7.

Each channel can be changed to single-phase input or AB-phase input according to the high-speed counter configuration, but it should be noted that the occupied X point cannot be repeated.


```
    speed
    counter
    type
HSCO Single A
    phase
    input
    (S/W)
    AB A B
    phase
    input
HSC1 Single A
    phase
    input
    (S/W)
    AB A B
    phase
    input
HSC2 Single A
    phase
    input
    (S/W)
    AB
    phase
    input
HSC3 Single
    phase
    input
    (S/W)
    AB
    phase
    input
HSC4 Single
                                A
    phase
    input
    (S/W)
    AB A B
    phase
    input
HSC5 Single
    phase
    input
    (S/W)
    AB A B
    phase
    input
HSC6 Single
    phase
    input
    (S/W)
    AB
    phase
    input
HSC7 Single
                                A
    phase
    input
    (S/W)
```

AB
phase
input

A: Phase A input B: Phase B input

\#Note: After HSC0 uses the AB phase input, HSC1 can no longer use single-phase input, because HSC0 occupies two points X0 and X1, and if HSC1 wants to use single-phase input, X1 needs to be occupied and conflicts occur. The same is true for other channels.

High-speed counter use steps

The following describes the steps to use the high-speed counter.
"Project management" \rightarrow "Parameter" \rightarrow "High-speed counter configuration"
(1) Screen display

High-speed counting configuration								
Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSC7
Use or not	Unused							
Pulse input mode	Single phase...							
Counting direction	Up counting ...							
Frequency multiplication	1 times freq...							
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	1000
Filter time(0.01us)	1	1	1	1	1	1	1	1
Max frequency(HZ)	150K							
Occupy X points	ingle phase: XI (B phase: X0, X	ingle phase: X IB phase: X2, X	ingle phase: X i \&B phase: X4, X	ingle phase: X : 4B phase: X6, X	ingle phase: X. 3 phase: X10, X	ingle phase: X : 3 phase: X12, X	ingle phase: X 3 phase: X14, X	ingle phase: X 3 phase: X16, X
			Input (X) description		Check	Reset	OK	Cancel

(2) Display content

Parameter
Use or not
Pulse input
mode
Counting direction
Frequency multiplication

Input frequency test time (ms)

Filter time

Highest frequency

Occupy X points
Check button

Restore to default

Range

Use/not use
Single phase input
AB phase input
Up counting mode down counting mode
One times frequency
two times frequency
four times frequency
1 to 32767 (ms)

0 to 1700(0.01us)

Single phase input: 150K
AB phase input: 100 K

Instruction

Set whether to use the counter.
Choose to use single phase input or AB ph

Select up/down counting mode, valid only Select input count multiplier, only valid whe

Set how often the input frequency is measu measurement result is output in the specia register.
Set the X point of this channel as the filter t but the anti-interference ability will be reduc

When the input is 0 , it is the lowest filter Display the highest input frequency that ea

Show which X points are occupied after us
Check whether the configured X input point input
Restore to the same default settings as abc

Input (X) description
Confirm input

Pop up the description table of all modes o After the configuration is complete, click to

(3) Configuration example

HSC0 to HSC3 are configured as 4 single-phase inputs, and HSC4 to HSC7 are configured as 4 AB phase inputs.
High-speed counting configuration

Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSC7
Use or not	Use							
Pulse input mode	Single phase...	Single phase...	Single phase...	Single phase...	AB phase in...	AB phase in...	AB phase in...	AB phase in...
Counting direction	Up counting ...							
Frequency multiplication	1 times freq...							
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	1000
Filter time(0.01us)	1	1	1	1	4	4	4	4
Max frequency(HZ)	150K	150K	150K	150K	01H	01H	01H	01H
Occupy X points	ingle phase: X (B phase: X0, X	ingle phase: X IB phase: $\mathrm{X} 2, X$	ingle phase: X \&B phase: X4, X	ingle phase: X : IB phase: X6, X	ingle phase: X. 3 phase: X10, X	ingle phase: X ! 3 phase: X12, X	ingle phase: X 1 3 phase: X14, X	ingle phase: X 3 phase: X16, X

Input (X) description Check \quad Reset \quad OK \quad Cancel

Use the OUT HSC instruction in the main program to enable High-speed counter. At this time, as long as there is an external pulse input, the pulse value can be observed in HSC0 to HSC7.

In the double word composed of special soft components SD403 and SD402, the current input pulse frequency of HSC0 can be monitored. Other channels also have corresponding registers, please refer to the description of special registers for details.

If the counter need to be stopped, just turn off the OUT HSC instruction.

High-speed counter instructions

OUT HSC/High-speed counter switch

When the operation result before the OUT HSC instruction is ON, the high-speed counter is turned on. At this time, the value of the HSC register records the number of high-speed pulses currently received. If the count value is reached, the corresponding HSC bit register becomes on.
-[OUT (d) (value)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	High-speed counter channel	HSCO to HSC7	Signed BIN 32 bit	ANY32
(value)	High-speed counter setting value	-2147483648 to	Signed BIN 32 bit	ANY32
		2147483647		

Device used

Features

To enable or disable high-speed counter counting, please configure the high-speed input channel to use the highspeed counter. For details, refer to the high-speed counter description.

Operation result before instruction	Action	HSC data register status	HSC bit register status
ON	Turn on High-speed counter	The value is accumulated according to the input pulse	Turn ON when the value reaches the set value, otherwise OFF
OFF	Stop High-speed counter	The value remains the same	State remains unchanged

Error code

Error code
4085H
2580H

Content
(value) The read address exceeds the device range
After the high-speed counter is turned on, but the axis highspeed counter enable is not configured

Example

HSC0 to HSC3 are configured as 4 single-phase inputs, and HSC4 to HSC7 are configured as 4 AB phase inputs.

High-speed counting configuration

Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSC7
Use or not	Use							
Pulse input mode	Single phase...	Single phase...	Single phase...	Single phase...	$A B$ phase input	AB phase input	AB phase input	AB phase input
Counting direction	Up counting ...	Up counting ...	Up counting ...	Up counting ...	Up counting mode	Up counting mode	Up counting mode	Up counting mode
Frequency multiplication	1 times freq...	1 times freq...	1 times freq...	1 times freq...	4 times frequency	4 times frequency	4 times frequency	4 times frequency
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	1000
Filter time(0.01us)	1	1	1	1	1	1	1	1
Max frequency(HZ)	150K	150 K	150K	150K	01H	01H	01H	01H
Occupy X points	ingle phase: XI tB phase: X0, X	ingle phase: X IB phase: X2, X	ingle phase: X_{i} IB phase: X4, X	$\begin{aligned} & \text { ingle phase: } \mathrm{X} \\ & \text { 4B phase: } \mathrm{X}, \mathrm{X} \\ & \hline \end{aligned}$	Single phase: X 4 AB phase: $\mathrm{X} 10, \mathrm{X} 11$	$\begin{gathered} \hline \text { Single phase: X5 } \\ \text { AB phase: } \mathrm{X} 12, \mathrm{X} 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Single phase: X6 } \\ \text { AB phase: } \mathrm{X} 14, \mathrm{X} 15 \\ \hline \end{gathered}$	$\begin{gathered} \text { Single phase: } \mathrm{X} 7 \\ \mathrm{AB} \text { phase: } \mathrm{X} 16, \mathrm{X} 17 \\ \hline \end{gathered}$

Use the OUT HSC instruction in the main program to enable High-speed counter. At this time, as long as there is an external pulse input, the pulse value can be observed in HSC0 to HSC7.

In the double word composed of special soft components SD403 and SD402, the current input pulse frequency of HSCO can be monitored. Other channels also have corresponding registers, please refer to the description of special registers for details.

When the value of HSCO is greater than 0 , the contact of HSCO will be set, and the other channels are the same. As shown in the circuit program below, YO will be turned on.

DHSCS/High-speed comparison set

Comparing the counted value in the high-speed counter with the specified value each time it counts, and then immediately set the bit device instruction.

```
-[DHSCS (s1) (s2) (d)]
```

Content, range and data type

Corameter

(ㅈthe data compared with the current value of the high-speed counter, or the word device number where the data to be compared is stored (\$iig)h-speed counter device
(3d) device number set (ON) when they match

Device used

Insifaratioater Devices Offset modification Pulse

Y M S SMD.bKnKnKnKnB R SDLCHSK H [D]
extension

DHB\&\&meter 1
Parameter 2
Parameter 3

Features

- When the current value of the high-speed counter of the channel specified in (s 2) becomes the comparison value ($s 1$) (in the case of the comparison value K200, 199 $\rightarrow 200$ and $201 \rightarrow 200$), regardless of the scan time, the bit device (d) Both will be set (ON). This instruction performs comparison processing after the counting processing of the high-speed counter.

- If the device specified in (d) is Y0 to Y20, when (d) is set, Y will be directly mapped to the actual hardware output, regardless of the scan cycle.
- DHSCS parameter 3 can also use the interrupt function name as a parameter. As shown in the figure below, the interrupt program INTO will be executed when HSC0 is from (19999 $\rightarrow 20000$) or $(20001 \rightarrow 20000)$.

\#Note:

The high-speed counter interrupt only supports a total of 100 programs, and each DHSCS is also counted in these 100. If it exceeds, an operation error will be reported.

Error code

Error code

4084H
4085H
4086H
2406H
4F81H

Content

The input device in (s2) exceeds the range of HSCO to HSC7
($s 1$) and ($s 2$) read addresses exceed the device range
(d) write address exceeds the device range

The number of high-speed counter interrupts exceeds 100
DHSCS,SHSCR and DHSZ runs,but OUT HSC does not program

Example

To configure the high-speed counter, take HSC 0 as an example.

High-speed counting configuration X								
Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSC7
Use or not	Use	Unused						
Pulse input mode	AB phase input	Single phase...						
Counting direction	Up counting mode	Up counting ...						
Frequency multiplication	4 times frequency	1 times freq...						
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	1000
Filter time(0.01us)	0	1	1	1	1	1	1	1
Max frequency(HZ)	01H	150K	150K	150K	01H	01H	01H	01H
Occupy X points	Single phase: $\mathrm{X0}$ AB phase: $\mathrm{X} 0, \mathrm{X} 1$	ingle phase: X (B phase: X2, X	ingle phase: X ©B phase: X4, X	ingle phase: X : tB phase: X6, X	ingle phase: X. 3 phase: X10, X	ingle phase: X : 3 phase: X12, X	ingle phase: XI 3 phase: X14, X	ingle phase: X 3 phase: X16, X
< ${ }^{\text {c }}$								
			Input (X) description		Check	Reset	OK	Cancel

In scanning MAIN, use the EI instruction to enable the interrupt, and then use the OUT HSC instruction to turn on the high-speed counter.

After M0 is turned on, when the value of HSCO changes from 19999 $\rightarrow 20000$, the INT0 program is executed once, that is, D0 is increased by 1.

When the value of HSC0 changes from $20000 \rightarrow 20001$, the INT0 program is not executed, that is, D0 remains at 1.

When the value of HSCO changes from $20001 \rightarrow 20000$, the INTO program is executed once, that is, D0 is increased by 1 , and D0 is 2 .

DHSCR/High-speed comparison reset

Each time it counts, compare the counted value in the high-speed counter with the specified value, and then immediately reset the bit device instruction.

> -[DHSCR (s1) (s2) (d)]

Content, range and data type

Cordereter

(\$519) data compared with the current value of the high-speed counter, or the word device number where the data to be compared is stored (\$ig)h-speed counter device
Bll device number reset (OFF) when they match

Device used

InsPRanctioesterOffset modificationPulse
extension
Devices
Y M S SMD.bKnKnKnKan日 R SDLCHSk H [D] Offs
[D]XXP
DHB@Rmeter 1

Parameter 2

Parameter 3

Features

- When the current value of the high-speed counter of the channel specified in (s2) becomes the comparison value (s1) (in the case of the comparison value K200, 199 $\rightarrow 200$ and 201 $\rightarrow 200$), regardless of the scan time, the bit device (d) Both will be reset (OFF). This instruction performs comparison processing after the counting processing of the high-speed counter.

When contact closes	DHSCS	(s1)	(s2)	(d)	$(\mathrm{s} 1)=(\mathrm{s} 2) \rightarrow(\mathrm{d})$

- If the device specified in (d) is Y0 to Y 20 , when (d) is set, Y will be directly mapped to the actual hardware output, regardless of the scan cycle.

\#Note:

The high-speed counter interrupt only supports a total of 100 programs, and each DHSCR is also counted in these 100. If it exceeds, an operation error will be reported.

Error code

Error code

4084H
4085H
4086H
2406H
4F81H

Content

The input device in (s 2) exceeds the range of HSCO to HSC7
The (s1) and (s2) read addresses exceed the device range
The (d) write address exceeds the device range
The number of high-speed counter interrupts exceeds 100
DHSCS,SHSCR and DHSZ runs,but OUT HSC does not program.

Example

To configure the high-speed counter, use HSC0 as an example.

High-speed counting configuration

Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSO
Use or not	Use	Unused	Unused	Unused	Unused	Unused	Unused	Unus
Pulse input mode	$A B$ phase input	Single phase...	Single ${ }_{\text {F }}$					
Counting direction	Up counting mode	Up counting ...	Up cour					
Frequency multiplication	1 times frequency	1 times freq...	1 times					
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	100
Filter time(0.01us)	0	1	1	1	1	1	1	
Max frequency(HZ)	01H	150K	150K	150K	01H	01H	01H	01
Occupy X points	Single phase: X0 AB phase: $\mathrm{X0}, \mathrm{X} 1$	ingle phase: X B phase: X2, X	ingle phase: X IB phase: X4, X	ingle phase: X 4B phase: X6, X	ingle phase: X. 3 phase: X10, X	ingle phase: X : 3 phase: X12, X	ingle phase: XI 3 phase: X14, X	ingle pH 3 phase:
<								
			Input () $_{\text {des }}$	cription	Check	Reset	OK	ancel

Use the OUT HSC instruction to turn on the high-speed counter while scanning MAIN.
After M0 is turned on, when the value of HSCO changes from $99 \rightarrow 100$, reset Y 0 and D 0 will increase by 1.

DHSZ/High-speed zone comparison

The current value of the high-speed counter is compared with two values (bandwidth), and the comparison result is output.
-[DHSZ (s1) (s2) (s3) (d)]
Content, range and data type

Cordmeter

(stil) data compared with the current value of the high-speed counter, or the word device number (comparison value 1) where the data to be compared is stored
(Is) data compared with the current value of the high-speed counter, or the word device number (comparison value 2) where the data to be compared is stored
(\$igh)-speed counter device
(dd)e device number of the start bit of the comparison result output in comparison value 1 and comparison value 2

Device used

InstructionParameter

Devices

Y
DHSCZ Parameter 1
Parameter 2
Parameter 3
Parameter 4

Features

- Compare the current value of the high-speed counter specified in (s3) with two comparison values (comparison value 1 , comparison value 2), regardless of the scan time, (d), (d) +1 , (d) +2 One item in will turn ON according to the comparison result (lower, in area, upper).

$$
\begin{aligned}
(\mathrm{s} 1)>(\mathrm{s} 3) & \rightarrow(\mathrm{d}) \\
(\mathrm{s} 1) \leq(\mathrm{s} 3) \leq(\mathrm{s} 2) & \rightarrow(\mathrm{d})+1 \\
& (\mathrm{~s} 3)>(\mathrm{s} 2) \rightarrow
\end{aligned}
$$

- If the device specified in (d) is $Y 0$ to $Y 15$, when (d), $(d+1),(d+2)$ are set, Y will be directly mapped to the actual hardware output, not affected by the scan cycle .
- When setting [Comparison Value 1] and [Comparison Value 2], please ensure that [Comparison Value 1]<[Comparison Value 2]. If the settings are different, an operation error will occur, and the DHSZ instruction will not execute the action.

\#Note:

The high-speed counter interrupt only supports a total of 100 programs, and each DHSZ is also counted in these 100, and the DHSZ instruction will occupy the space of 2 interrupt programs. If it exceeds, an operation error will be reported.

The comparison result occupies the unit of 3 consecutive addresses starting with (d). Please be careful not to overlap with other controlled devices. In addition, when specifying the Y device, please set it not to exceed the actual number of Y point outputs.

Error code

Error code

4084H
4085H
4086H
2406H
4F81H

Content

(s2) The input device exceeds the range of HSCO to HSC7
(s1)(s2) The read address exceeds the device range
(d) The write address exceeds the device range

The number of high-speed counter interrupts exceeds 100
DHSCS,SHSCR and DHSZ runs,but OUT HSC does not program

Example

To configure the high-speed counter, use HSC0 as an example.

High-speed counting configuration

Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HS
Use or not	Use	Unused	Unused	Unused	Unused	Unused	Unused	Unus
Pulse input mode	$A B$ phase input	Single phase...	Single \quad -					
Counting direction	Up counting mode	Up counting ...	Up cour					
Frequency multiplication	1 times frequency	1 times freq...	1 times					
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	10
Filter time(0.01us)	0	1	1	1	1	1	1	
Max frequency(HZ)	01H	150K	150K	150K	01H	01H	01H	01
Occupy X points	Single phase: X0 AB phase: $\mathrm{X0} 0, \mathrm{X} 1$	ingle phase: X B phase: X2, X	ingle phase: X IB phase: $\mathrm{X} 4, \mathrm{X}$	ingle phase: X : 4B phase: X6, X	ingle phase: X. 3 phase: X10, x	ingle phase: X 3 phase: X12, x	ingle phase: XI 3 phase: X14, X	ingle ph 3 phase:
$<$								
(in)			Input (X) des	cription	Check	Reset	OK C	ancel

Scanner

Execution results

Comparison mode

Current value of channel 1 (s3)

$(\mathrm{S} 1)>(\mathrm{s} 3)$	$1000>(\mathrm{s} 3)$
	$999 \rightarrow 1000$
$(\mathrm{~S} 1) \leq(\mathrm{s} 3) \leq(\mathrm{s} 2)$	$1000 \rightarrow 999$
	$999 \rightarrow 1000$
	$1000 \rightarrow 999$
	$1000 \leq(\mathrm{s} 3) \leq 2000$
	$2000 \rightarrow 2001$
$(\mathrm{~S} 3)>(\mathrm{s} 2)$	$2001 \rightarrow 2000$
	$2000 \rightarrow 2001$
	$2001 \rightarrow 2000$
	$(\mathrm{~S} 3)>2000$

