

# PJH

### **Highlights & Features**

- Major safety approvals include IEC/UL 60950-1, IEC/EN/UL 62368-1, IEC/EN 60335-1, IEC/EN 61558-1 and IEC/EN 61558-2-16
- Available for Class I or Class II (double isolation) configuration with universal AC input voltage range
- 300W fan cool and up to 240 W convection cool
- Standard industrial footprint of 3" x 5"
- Built-in active PFC, remote ON/OFF, remote sense, power good signal
- No load input power consumption < 0.5 W and low earth leakage current < 0.75 mA
- Extreme low temperature cold start at -40°C

# Safety Standards



CB Certified for worldwide use

Model Number: Unit Weight:

PJH-TV300WB 0.45 kg (0.99lb) Dimensions (L x W x H): 127 x 76.2 x 35.8 mm (5.00 x 3.00 x 1.41 inch)

# **General Description**

The PJH-300W product is specifically designed with small standard industrial 3" x 5" footprint for household electrical appliances with safety approvals for pollution degree 3 including IEC/EN 60335-1 and IEC/EN 61558-2-16, as well as IEC/UL 60950-1 and IEC/EN/UL 62368-1. The PJH Series of Open frame power supply with 300 W output power and provides up to 240W power convection cooled without additional metal plate. With external fan cooling, it can provide 300 W output power across a wide operating temperature range from -25°C to +70°C across the entire input voltage range of 90 to 264 Vac and features low earth leakage current less than 0.75 mA. The built-in active PFC product can configure with either Class I or Class II (double isolation) and is certified for EMI standards according to EN55032 Class B (with FG connection).

### **Model Information**

### PJH Open Frame Power Supply

| Model Number   | Input Voltage Range | Rated Output Voltage |                          | Rated Output Current |                         |
|----------------|---------------------|----------------------|--------------------------|----------------------|-------------------------|
| PJH-24V300WBB□ | 90-264 Vac          | V1: 24 Vdc           | V <sub>SB</sub> : 5 Vdc  | V1: 12.5 A           | Vsb: 1.2 A              |
| PJH-24V300WBC□ |                     |                      | V <sub>SB</sub> : 12 Vdc |                      | V <sub>SB</sub> : 0.5 A |
| PJH-36V300WBB□ |                     | V1: 36 Vdc           | V <sub>SB</sub> : 5 Vdc  | V1: 8.3 A            | V <sub>SB</sub> : 1.2 A |
| PJH-36V300WBC  |                     |                      | V <sub>SB</sub> : 12 Vdc |                      | V <sub>SB</sub> : 0.5 A |

### **Model Numbering**

1

| PJ         | H –                                     | □v                             | 300W         | В                                 |                                            |                                                                                   |
|------------|-----------------------------------------|--------------------------------|--------------|-----------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------|
| Open Frame | Product Type<br>H – Household<br>Series | Output Voltage<br>24 V<br>36 V | Output Power | Package Type<br>B – Open<br>Frame | Voltage<br>Standby<br>B – 5 V*<br>C – 12 V | Connector Type<br>A – JST Connector<br>B – Molex Connector*<br>C – JWT Connector* |

\*Options, Molex comply Glow wire test 550°C, 750°C (te - ti ≤ 2s), 850°C.



### **Specifications**

|                                          | Model Number | PJH-24V300WB□□                       | PJH-36V300WB□□                     |  |
|------------------------------------------|--------------|--------------------------------------|------------------------------------|--|
| nput Ratings / Characteristics           |              |                                      |                                    |  |
| Nominal Input Voltage                    |              | 100-240 Vac                          |                                    |  |
| Input Voltage Range                      |              | 90-264 Vac                           |                                    |  |
| Nominal Input Frequency                  |              | 50-60 Hz                             |                                    |  |
| Input Frequency Range                    |              | 47-63 Hz                             |                                    |  |
| Input Current                            |              | < 4.0 A @ 115 Vac, < 2.0 A @ 230 Vac |                                    |  |
| Efficiency*                              | 100% load    | > 93% @ 115 Vac<br>> 94% @ 230 Vac   | > 93% @ 115 Vac<br>> 94% @ 230 Vac |  |
| Max Power Dissipation*                   | No Load      | < 0.5 W @ 115 Vac & 230 Vac          | Note: At Remote signal Off PSU     |  |
|                                          | 100% Load    | < 23 W @ 115 Vac & 230 Vac           | < 23 W @ 115 Vac & 230 Vac         |  |
| Max Inrush Current (Cold Start)          |              | < 20 A @ 115 Vac, < 40 A @ 230 Vac   |                                    |  |
| Power Factor 100% load                   |              | > 0.95 @ 115 Vac & 230 Vac           |                                    |  |
| Earth Leakage Current<br>(Touch Current) |              | < 0.75 mA @ 240 Vac                  |                                    |  |

\*V<sub>SB</sub> @ no load condition.

# Output Ratings / Characteristics\*\*

| Nominal Output Voltage                                | PJH-300WBB□            | V1: 24 Vdc                                                                 | V <sub>SB</sub> : 5 Vdc     | V1: 36 Vdc                                               | V <sub>SB</sub> : 5 Vdc      |  |
|-------------------------------------------------------|------------------------|----------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------|------------------------------|--|
|                                                       | PJH-300WBC             | V1: 24 Vdc                                                                 | V <sub>SB</sub> : 12 Vdc    | V1: 36 Vdc                                               | V <sub>SB</sub> : 12 Vdc     |  |
| Factory Set Point Tolerance                           | V1: ± 0.2%             | V <sub>SB</sub> : -                                                        |                             |                                                          |                              |  |
| Output Voltage Adjustment Range                       | V1: 22.8-25.2 Vo       | lc V <sub>SB</sub> : -                                                     | V1: 34.2-37.8 Vd            | c V <sub>SB</sub> : -                                    |                              |  |
| Output Current***                                     | PJH-300WBB□            | V1: 0-12.5 A<br>(300 W Max.)                                               | Vsb: 0-1.2 A                | V1: 0-8.3 A<br>(300 W Max.)                              | V <sub>SB</sub> : 0-1.2 A    |  |
|                                                       | PJH-300WBC□            | V1: 0-12.5 A<br>(300 W Max.)                                               | V <sub>SB</sub> : 0-0.5 A   | V1: 0-8.3 A<br>(300 W Max.)                              | V <sub>SB</sub> : 0-0.5 A    |  |
| Output Power                                          | PJH-300WBB□            | V1: 300 W V <sub>SB</sub> : 6 W                                            |                             |                                                          |                              |  |
|                                                       | PJH-300WBC□            | Note: Vout is in regulation until no load.                                 |                             |                                                          |                              |  |
| Line Regulation                                       | V1 and $V_{\text{SB}}$ | < 0.5% (@ 90-264 Vac input, 0-100% load)                                   |                             |                                                          |                              |  |
| Load Regulation                                       | V1 and $V_{\text{SB}}$ | < 1.0% (@ 90-264 Vac input, 0-100% load)                                   |                             |                                                          |                              |  |
| PARD**** (20MHz)                                      | PJH-300WB□□            | V1: < 240 mVpp                                                             | V <sub>SB</sub> : < 120 mVp | op V1: < 360 mVpp                                        | V <sub>SB</sub> : < 120 mVpp |  |
|                                                       |                        | Note: At 100% load, 20 Hz to 20 MHz, warm up for 10mins.                   |                             |                                                          |                              |  |
| Rise Time                                             | V1 and $V_{SB}$        | < 100 ms @ nom                                                             | ninal input (100%           | load)                                                    |                              |  |
| Start-up Time                                         | V1 and $V_{\text{SB}}$ | < 1,200 ms @ nominal input (100% load)                                     |                             |                                                          |                              |  |
| Hold-up Time                                          | V1                     | > 12 ms @ 115 Vac & 230 Vac (240 W)<br>> 10 ms @ 115 Vac & 230 Vac (300 W) |                             |                                                          |                              |  |
| Dynamic Response<br>(Overshoot & Undershoot O/P Volta | ge)                    | <u> </u>                                                                   |                             | -100% load, V <sub>SB</sub> : 0-1<br>vcle @ 5 Hz, 50 Hz, |                              |  |
| Start-up with Capacitive Loads                        | V1                     | 8,000 μF Max @ nominal input (100% load)                                   |                             |                                                          |                              |  |

2

\*\*For power de-rating from 50°C to 70°C, see power de-rating on page 3.
\*\*\*V<sub>SB</sub>: 100% load @ fan cool, 50% load @ convection.
\*\*\*\*PARD is measured with an AC coupling mode, 5 cm wires, and in parallel with 0.47 μF ceramic capacitor & 10 μF electrolytic capacitor.



|                               | Model Number        | PJH-24V300WB□□                      | PJH-36V300WB□□               |  |
|-------------------------------|---------------------|-------------------------------------|------------------------------|--|
| Mechanical                    |                     |                                     |                              |  |
| Dimensions (L x W x H)        |                     | 127 x 76.2 x 35.8 mm (5.00 x 3.00 x | (1.41 inch)                  |  |
| Unit Weight                   |                     | 0.45 kg (0.99 lb)                   |                              |  |
| Indicator                     | Green LED           | DC OK                               |                              |  |
| Cooling System                | Convection          | V1: 0-240 W Vsb: 0-3 W              |                              |  |
|                               | Fan Cool            | V1: 0-300 W V <sub>SB</sub> : 0-6 W |                              |  |
|                               |                     | Note: With 10 CFM fan cool, 10 cm   | distance between PSU and fan |  |
| Power Supply Header           | Input (CN1)         | B2P3-VH(LF)(SN)                     |                              |  |
|                               | Output (CN102, 103) | TERMINAL M3 x 0.5                   |                              |  |
|                               | Standby (CN101)     | BM10B-SRSS-TB(LF)(SN)               |                              |  |
| Wire                          | Input (CN1)         | AWG 18                              |                              |  |
|                               | Output (CN102, 103) | AWG 16-10                           |                              |  |
|                               | Standby (CN101)     | AWG 32-28                           |                              |  |
| Noise (1 Meter from power sup | oply)               | Sound Pressure Level (SPL) < 25 d   | BA                           |  |

### Environment

| Surrounding Air Temperature    | Operating                        | -25°C to +70°C (Cold Start -40°C)                                                                                         |  |
|--------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
|                                | Storage                          | -40°C to +85°C                                                                                                            |  |
| Power De-rating                | Temperature<br>(Convection)      | Refer to Output Load De-rating VS Surrounding Air Temperature Fig.1 on Page 9                                             |  |
| _                              | Temperature<br>(Fan Cool)        | > 50°C de-rate power by 7.5W / °C<br>(300 W @ 50°C, 225 W @ 60°C, 150 W @ 70°C with 10 CFM fan cool)                      |  |
| Operating and Storage Humidity |                                  | 5 to 95% RH (Non-Condensing)                                                                                              |  |
| Operating Altitude             | PD3                              | 0 to 5,000 Meters (16,400 ft.), Class I                                                                                   |  |
|                                | PD2                              | 0 to 3,000 Meters (9,840 ft.), Class II                                                                                   |  |
| Shock Test                     | Non-Operating                    | IEC 60068-2-27, Half Sine 30G for a duration of 18 ms, 3 times per direction, 9 times in total                            |  |
| Vibration                      | Non-Operating                    | IEC 60068-2-6, 10 Hz to 500 Hz @ 30 m/S² (3G peak);<br>displacement of 0.35 mm; 60 min per axis for all X, Y, Z direction |  |
| Bump Test                      | Operating                        | IEC 60068-2-29, Half Sine 10 G (100 m/S²) for a duration of 11 ms, 1,000 times per direction, 6,000 times in total        |  |
| Over Voltage Category          |                                  | Design to OVC III according to IEC/EN 61558                                                                               |  |
| Pollution Degree               | Class I<br>(with PE* connection) | PD3                                                                                                                       |  |
|                                | Class II                         | II PD2                                                                                                                    |  |

\*PE: Primary Earth



|                                    | Model Number           | PJH-24V300WB□□                                                                                                                                                                                                                                         | PJH-36V300WB□□                          |  |
|------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| Protections                        |                        |                                                                                                                                                                                                                                                        |                                         |  |
| Output Overvoltage                 | V1 and $V_{\text{SB}}$ | <ul> <li>SELV Output, Latch Mode</li> <li>V1 fault, protect only V1 and V<sub>SB</sub> still continuously operate</li> <li>V<sub>SB</sub> fault, protect both V1 and V<sub>SB</sub></li> </ul>                                                         |                                         |  |
|                                    | V1                     | 26 ~ 33 V, SELV Output,<br>Latch Mode                                                                                                                                                                                                                  | 39 ~ 46.8 V, SELV Output,<br>Latch Mode |  |
|                                    | 5 V <sub>SB</sub>      | 6.3 V - 7.7 V, SELV Output, Latch Mode                                                                                                                                                                                                                 |                                         |  |
|                                    | 12 Vsb                 | 13 V – 15 V, SELV Output, Latch Mode                                                                                                                                                                                                                   |                                         |  |
| Overload / Overcurrent             |                        | <ul> <li>130 ~ 180% of rated load current, Hiccup mode,<br/>Non-Latching (Auto recovery)</li> <li>V1 fault, protect only V1 and V<sub>SB</sub> still continuously operate</li> <li>V<sub>SB</sub> fault, protect both V1 and V<sub>SB</sub></li> </ul> |                                         |  |
| Over Temperature                   |                        | Latch Mode                                                                                                                                                                                                                                             |                                         |  |
| Short Circuit                      |                        | <ul> <li>Hiccup Mode, Non-Latching (Auto-Recovery when the fault is removed</li> <li>V1 fault, protect only V1 and V<sub>SB</sub> still continuously operate</li> <li>V<sub>SB</sub> fault, protect both V1 and V<sub>SB</sub></li> </ul>              |                                         |  |
| Transient Surge Voltage Protection |                        | MOV (Metal Oxide Varistor)                                                                                                                                                                                                                             |                                         |  |
| Internal Fuse at L pin             |                        | T 5AL                                                                                                                                                                                                                                                  |                                         |  |
| Protection Against Shock           |                        | Class I with PE* connection,<br>Class II without PE* connection<br>Note: Refer to the details in the Pollution Degree and EMC section                                                                                                                  |                                         |  |

\*PE: Primary Earth

# **Reliability Data**

4

| MTBF                   | > 700,000 hrs. as per Telcordia SR-332<br>I/P: 115 Vac, O/P: 80% load or 240 W, Ta: 25°C |
|------------------------|------------------------------------------------------------------------------------------|
| Expected Cap Life Time | 10 years (115 Vac, 40% load or 120 W @ 40°C)                                             |

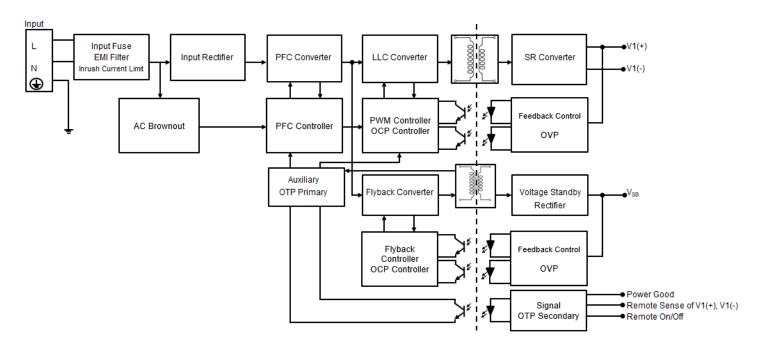
### Safety Standards / Directives

| Safety Entry Low Vo  | oltage       |                   | SELV (IEC 60950-1)                                                                                                                                |  |
|----------------------|--------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Electrical Safety    |              | SIQ Bauart        | EN 62368-1, EN 60335-1, EN 61558-1, EN 61558-2-16                                                                                                 |  |
|                      |              | UL/cUL recognized | UL 60950-1 and CSA C22.2 No. 60950-1 (File No. E191395)<br>UL 62368-1 and CSA C22.2 No. 62368-1 (File No. E191395)                                |  |
|                      |              | CB scheme         | IEC 60950-1, IEC 62368-1, IEC 60335-1, IEC 61558-1, IEC 61558-2-16                                                                                |  |
|                      |              | UKCA              | BS EN 62368-1                                                                                                                                     |  |
| CE                   | CE           |                   | In conformance with EMC Directive 2014/30/EU and Low Voltage Directive 2014/35/EU                                                                 |  |
| UKCA                 |              |                   | In conformance with Electrical Equipment (Safety)<br>Regulations 2016 No. 1011 and<br>The Electromagnetic Compatibility Regulations 2016 No. 1091 |  |
| Galvanic Isolation   | PD3, Class I | Input to Output   | 4.0 kVac                                                                                                                                          |  |
|                      |              | Input to Ground   | 2.0 kVac (PD3, Class I)<br>4.0 kVac (PD2, Class II with Functional Ground)                                                                        |  |
|                      |              | Output to Ground  | 1.5 kVac                                                                                                                                          |  |
| Isolation Resistance |              | Input to Output   | > 5 MOhm                                                                                                                                          |  |



|                                         | Model Number                                                                                                                                                                                                                                                                                                                                                                         | PJH-24V300WB                                                                                                       |                                           | P         | JH-36V300WB□□                                                                    |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------|----------------------------------------------------------------------------------|
| EMC                                     |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |                                           |           |                                                                                  |
| Conducted Emissions                     | <ul> <li>Generic Standards: CISPR 11, CISPR 32, EN/BS EN 55011,<br/>EN/BS EN 55032, FCC Title 47, EN 55014-1</li> <li>Class B:</li> <li>For protection Class I, with PE* connection</li> <li>For protection Class II, with FG** connection</li> <li>Class A:</li> <li>For protection Class II, without FG connection</li> <li>*PE: Primary Earth, **FG: Functional Ground</li> </ul> |                                                                                                                    |                                           | on        |                                                                                  |
|                                         | Output Line                                                                                                                                                                                                                                                                                                                                                                          | EN55014-1 Class A                                                                                                  |                                           |           |                                                                                  |
| Radiated Emission                       |                                                                                                                                                                                                                                                                                                                                                                                      | Generic Standards: CIS<br>EN/BS EN 55032, FCC                                                                      |                                           |           |                                                                                  |
| Immunity                                |                                                                                                                                                                                                                                                                                                                                                                                      | Generic Standards: EN                                                                                              | 55024, EN 5                               | 55035, EN | 55014-2, EN 61204-3                                                              |
| Electrostatic Discharge                 | IEC 61000-4-2                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Level 4 Criteria A<sup>1)</sup></li> <li>Air Discharge: 8 kV</li> <li>Contact Discharge: 15 kV</li> </ul> |                                           |           |                                                                                  |
| Radiated Field                          | Level 3 Criteria A <sup>1)</sup><br>80 MHz - 1 GHz, 10 V/M, 80% modulation (1 kHz)<br>1.4 GHz - 2 GHz, 10 V/M, 80% modulation (1 KHz)<br>2 GHz - 2.7 GHz, 10 V/M, 80% modulation (1 KHz)                                                                                                                                                                                             |                                                                                                                    |                                           |           |                                                                                  |
| Electrical Fast Transient /<br>Burst    | t / IEC 61000-4-4 Level 3 Criteria A <sup>1)</sup><br>2 kV (Input power ports)                                                                                                                                                                                                                                                                                                       |                                                                                                                    |                                           |           |                                                                                  |
| Surge                                   | IEC 61000-4-5                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    |                                           |           |                                                                                  |
| Conducted                               | IEC 61000-4-6                                                                                                                                                                                                                                                                                                                                                                        | Level 3 Criteria A <sup>1)</sup><br>150 kHz-80 MHz, 10 Vrr                                                         | ms                                        |           |                                                                                  |
| Power Frequency Magnetic<br>Fields      | IEC 61000-4-8                                                                                                                                                                                                                                                                                                                                                                        | Criteria A <sup>1)</sup><br>30 A/Meter                                                                             |                                           |           |                                                                                  |
| Voltage Dips and Interruptions          | IEC 61000-4-11                                                                                                                                                                                                                                                                                                                                                                       | 100% dip; 1 cycle (20 m                                                                                            | s); Self Rec                              | overable  |                                                                                  |
| Low Energy Pulse Test<br>(Ring Wave)    | IEC 61000-4-12                                                                                                                                                                                                                                                                                                                                                                       | 12 Level 3 Criteria A <sup>1)</sup><br>Common Mode <sup>3)</sup> : 2 kV<br>Differential Mode <sup>4)</sup> : 1 kV  |                                           |           |                                                                                  |
| Harmonic Current Emission               |                                                                                                                                                                                                                                                                                                                                                                                      | IEC/EN/BS EN 61000-3-2, Class A                                                                                    |                                           |           |                                                                                  |
| Voltage Fluctuation and Flicker         |                                                                                                                                                                                                                                                                                                                                                                                      | IEC/EN/BS EN 61000-3-3                                                                                             |                                           |           |                                                                                  |
| Voltage Sag Immunity<br>SEMI F47 – 0706 |                                                                                                                                                                                                                                                                                                                                                                                      | 80% of 200 Vac<br>70% of 200 Vac<br>50% of 200 Vac                                                                 | 160 Vac, 10<br>140 Vac, 50<br>100 Vac, 20 | )0 ms     | Criteria A <sup>1)</sup><br>Criteria A <sup>1)</sup><br>Criteria A <sup>1)</sup> |

1) Criteria A: Normal performance within the specification limits


Criteria B: Temporary degradation or loss of function which is self-recoverable
 Asymmetrical: Common mode (Line to earth)
 Symmetrical: Differential mode (Line to line)

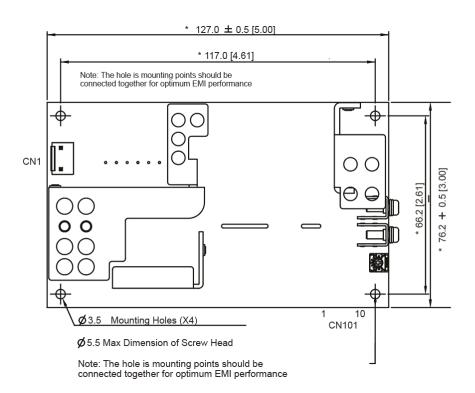
5

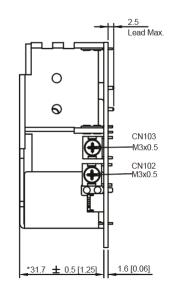


# **Block Diagram**

6





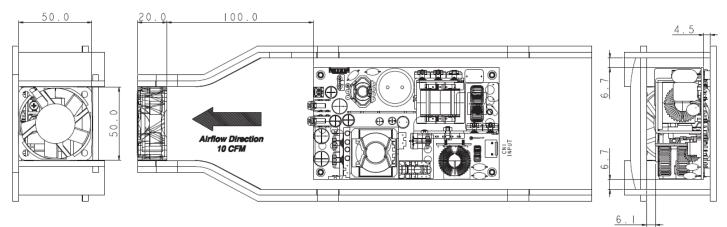


TECHNICAL DATASHEET

# PJH Open Frame Power Supply PJH-300W series / PJH-□V300WB□□

### **Dimensions**

L x W x H: 127 x 76.2 x 35.8 mm [5.00 x 3.00 x 1.41 inch]



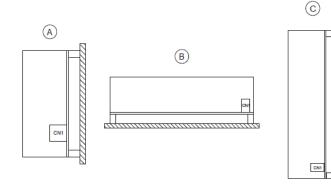


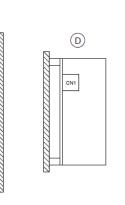

| Designation | Device Description                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CN1         | Input Connector<br>Pin 1: Neutral<br>Pin 2: Line                                                                                                                                                                                                                                                                                                                                                |
| CN101       | Control and V <sub>SB</sub> Connector<br>Pin 1: GND<br>Pin 2: $5V_{SB}$ (for PJH-300WBB $\square$ )<br>$12V_{SB}$ (for PJH-300WBC $\square$ )<br>Pin 3: GND<br>Pin 4: $5V_{SB}$ (for PJH-300WBB $\square$ )<br>$12V_{SB}$ (for PJH-300WBC $\square$ )<br>Pin 5: GND<br>Pin 6: Remote On/Off<br>Pin 7: GND<br>Pin 8: Power Good<br>Pin 9: Remote Sense of V1(-)<br>Pin 10: Remote Sense of V1(+) |
| CN102       | Output Connector: V1(+)                                                                                                                                                                                                                                                                                                                                                                         |
| CN103       | Output Connector: GND                                                                                                                                                                                                                                                                                                                                                                           |

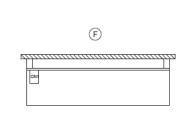


### **Engineering Data**

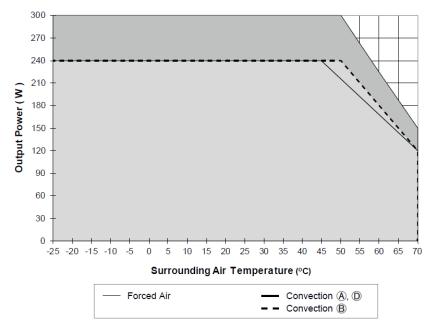
Installation of Forced Air





\*\*Unit: mm


8




### **Mounting Orientation**







### Output Load De-rating VS Surrounding Air Temperature

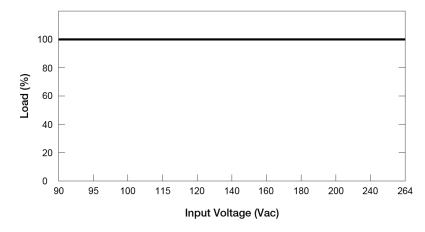




#### Note

E

CN1


- 1. Power supply components may degrade, or be damaged, when the power supply is continuously used outside the shaded region, refer to the graph shown in Fig. 1.
- 2. If the output capacity is not reduced when the surrounding air temperature exceeds its specification as defined on Page 3 under "Environment", the device will run into Over Temperature Protection. When activated, power supply will latch, until the surrounding air temperature is lowered or the load is reduced as far as necessary to keep the device in working condition, and require removal/re-application of input AC voltage in order to restart.
- 3. In order for the device to function in the manner intended, it is also necessary to keep a safety distance as recommended in the safety instructions while the device is in operation.
- 4. Depending on the surrounding air temperature and output load delivered by the power supply, the device can be very hot!

| Temperature                                  | Power De-rating                                                                                                                                                                                                                            | PJH-□V300WBB□                                                                                | PJH-□V300WBC□                                                                                   |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Fan cool<br>(All orientation)                | > 50°C de-rate power by 7.5 W / °C<br>(300 W @ 50°C, 225 W @ 60°C, 150 W @<br>70°C with 10 CFM fan cool)                                                                                                                                   | V1 = 300 W, <u>5 V/1.2 A</u><br>V1 = 150 W, <u>5 V/0 A</u>                                   | V1 = 300 W, <u>12 V/0.5 A</u><br>V1 = 150 W, <u>12 V/0 A</u>                                    |
| Convection<br>(Orientation (A), B), D) only) | Orientation ⓐ,<br>> 45°C de-rate power by 4.6W / °C<br>(240 W @ 45°C, 171 W @ 60°C, 125 W @<br>70°C)<br>Ensure sufficient convection cooling always<br>maintain a distance of ≥ 30mm below the<br>device while the device is in operation. | <b>Orientation</b> (A),(B),(D)<br>V1 = 240 W, <u>5 V/0.6 A</u><br>V1 = 125 W, <u>5 V/0 A</u> | <b>Orientation</b> (A),(B),(D)<br>V1 = 240 W, <u>12 V/0.25 A</u><br>V1 = 125 W, <u>12 V/0 A</u> |
|                                              | Orientation ®<br>> 50°C de-rate power by 5.75 W / °C<br>(240 W @ 50°C, 182.5 W @ 60°C, 125 W @<br>70° C)                                                                                                                                   |                                                                                              |                                                                                                 |

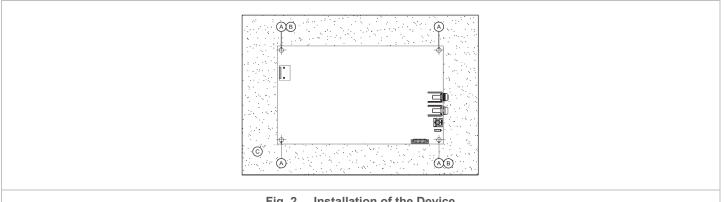


All parameters are specified at 25°C ambient and AC input unless otherwise indicated. www.DeltaPSU.com (November 2021, Rev. 02)

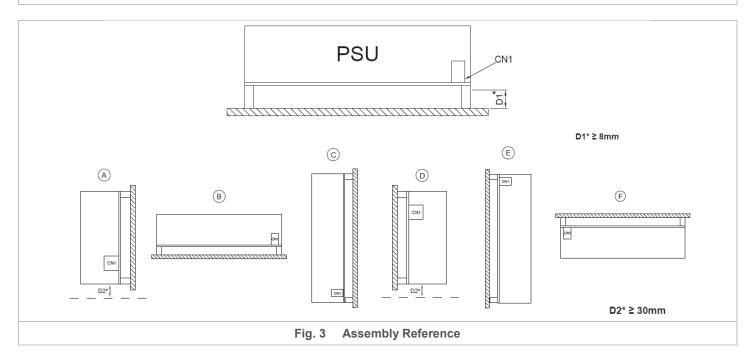
# Output Load De-rating VS Input Voltage



No output power de-rating across the entire input voltage range




# **Assembly & Installation**


(A) Mounting holes for the open frame type of power supply<sup>1</sup>).

B Mounting holes should be connected to the system's protective earth (PE) for Class I or functional ground (FG) for Class II<sup>1)</sup>. © This surface belongs to customer's end system or panel where the power supply is mounted.

1) Note: 4 x Ø3.5 mounting holes; Ø5.5 max dimension of screw head. Recommended mounting torque for tightening: 4-8Kgf.cm.







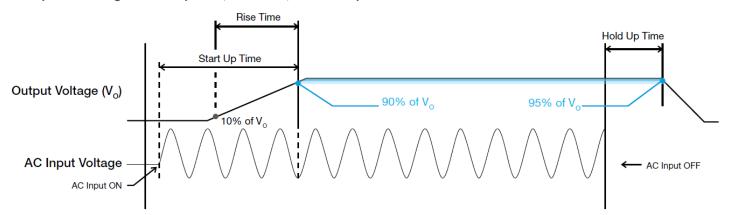
- Any excessive twisting or bending may damage the device's PCB. Please handle the device with care.
- Please refer to Table 1 for the recommended Mating Connector, Terminal and AWG wire size.

| Table 1         |       | Power Supply Header   | Mating<br>Connector | Terminal      | AWG   |
|-----------------|-------|-----------------------|---------------------|---------------|-------|
| Input (CN1)     | JST   | B2P3-VH(LF)(SN)       | VHR-3N              | SVH-21T-P1.1  | 18    |
| Standby (CN101) |       | BM10B-SRSS-TB(LF)(SN) | SHR-10V-S           | SSH-003T-P0.2 | 32-28 |
| Input (CN1)     | Molex | 26-62-4030            | 26-03-3031          | 6838 Series   | 18    |
| Standby (CN101) |       | 104141-1010           | 104142-1000         | 104539-8002   | 32-30 |
| Input (CN1)     | JWT   | A3963WV2-3P-D         | A3963H02-3P         | A3963T0P-2    | 18    |
| Standby (CN101) |       | A1002WV0-10PS-5E      | A1002H00-10P-66     | A1002TOP-2    | 36-28 |



#### Safety Instructions

- The device is not recommended to be placed on low thermal conductive surface, for example, plastics.
- Please insert an insulation sheet between the system and product, if the safety distance is < 8 mm (0.31 inch) for D1 (Refer to Fig. 3 Assembly Reference)</li>
- For (A), (D) orientations, ensure sufficient convection cooling, always maintain a distance of ≥ 30 mm (1.18 inch) for D2 below the device while the device is in operation.
- Installation of forced air, to ensure sufficient air flow, always maintain a distance and air flow direction as recommended in page 8
  while the device is in operation.
- Note that the device can become very hot depending on the ambient temperature and load of the power supply. Do not touch the
  device while it is in operation or immediately after power is turned OFF. Risk of burning!
- Do not touch the terminals while power is being supplied. Risk of electric shock.
- Prevent any foreign metal, particles or conductors to enter the device through the openings during installation. It can cause: Electric shock; Safety Hazard; Fire; Product failure.
- For Protection against shock to Class I with PE (protection earth) and Class II with or without FG (functional ground) product, the two mounting holes (marked (B) in Fig. 2) need to be connected together to the system's protective earth or functional ground. Pollution degree and EMC performance with different connections please refer to environment and EMC section.
- Warning: The power supply must be mounted by metal screws onto a grounded metal surface. It is highly recommended that the Earth terminal on the connector be connected to the grounded metal surface.


#### **External Input Protection Device**

The unit is protected at the L pin, with an internal fuse that cannot be replaced. The power supply has been tested and approved on 20A (UL) and 16A (IEC) branch circuits without additional protection device. An external protection device is only required if the supplying branch has an ampacity greater than above. Thus, if an external protective device is necessary, or, utilized, a minimum value of 10A B- or 6A C- characteristic breaker should be used.



#### **Functions**

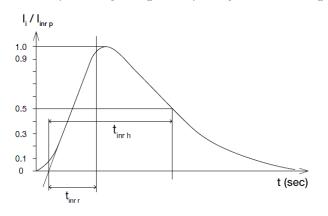
Graph illustrating the Start-up Time, Rise Time, and Hold-up Time



### Start-up Time

The time required for the output voltage to reach 90% of its final steady state set value, after the input voltage is applied.

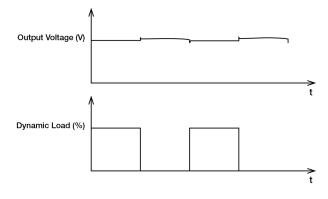
#### **Rise Time**


The time required for the output voltage to change from 10% to 90% of its final steady state set value.

#### Hold-up Time

Time between the collapse of the AC input voltage, and the output falling to 95% of its steady state set value.

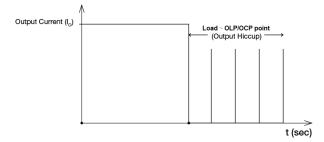
### Inrush Current


Inrush current is the peak, instantaneous, input current measured and, occurs when the input voltage is first applied. For AC input voltages, the maximum peak value of inrush current will occur during the first half cycle of the applied AC voltage. This peak value decreases exponentially during subsequent cycles of AC voltage.



### Dynamic Response

The power supply output voltage will remains within  $\pm 5\%$  of its steady state value, when subjected to a dynamic load from 10% to 100% of its rated current.


**50% duty cycle / 5 Hz to 1 KHz** 



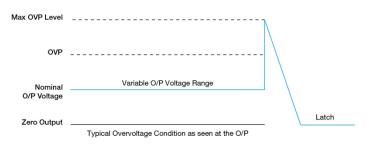


#### **Overload & Overcurrent Protections (Auto-Recovery)**

The power supply's Overload (OLP) and Overcurrent (OCP) Protections will be activated when either output's current ( $I_0$ ) exceeds its specification as defined on Page 4 under "Protections". In such occurrence, the output voltage ( $V_0$ ) will start to droop and once the power supply has reached its maximum power limit, the protection is activated and the power supply will go into "Hiccup mode" (Auto-Recovery). The power supply will recover once the fault condition of the OLP and OCP is removed and  $I_0$  is back within the specifications.



It is not recommended to prolong the duration of  $I_0$  when it is less than OLP/OCP point, but greater than 100%, since such an overload condition may cause damage to the PSU.


#### Short Circuit Protection (Auto-Recovery)

The power supply's output OLP/OCP function also provides protection against short circuits. When a short circuit is applied, the output current will operate in "Hiccup mode", as shown in the illustration in the OLP/OCP section on this page. The power supply will return to normal operation after the short circuit is removed.

#### Overvoltage Protection (Latch Mode)

The power supply's overvoltage protection circuit will be activated when its internal feedback circuit fails. The output voltage shall not exceed its specifications defined on Page 4 under "Protections". Power supply will latch off, and require removal/re-application of input AC voltage in order to restart.

#### The power supply should be latch



#### Over Temperature Protection (Latch Mode)

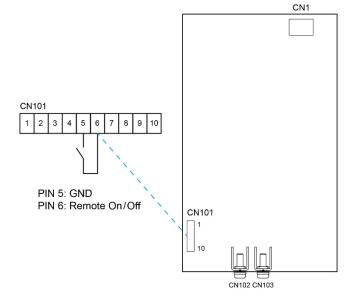
As described in load de-rating section, the power supply also has Over Temperature Protection (OTP). In the event of a higher operating temperature at 100% load; or, when the operating temperature is beyond what is recommended in the de-rating graph, the OTP circuit will be activated. When activated, power supply will latch off, until the surrounding air temperature drops to its normal operating temperature or the load is reduced as recommended in the de-rating graph. Removal/re-application of input AC voltage will then be required in order to restart.

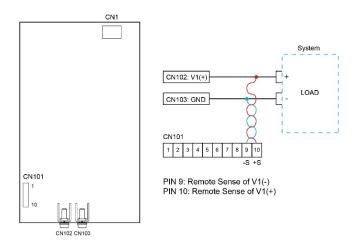




1 2 3 4 5 6 7 8 9 10

Fig. 4 Pin Assignment of CN101

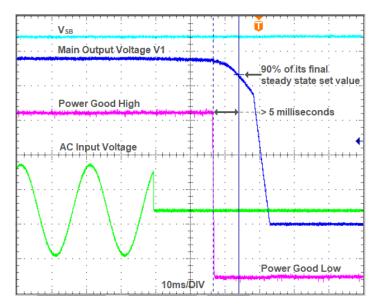

| Designation | Device Description                                                                                                                                                                                   |                                                                                                                                        |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| CN101       | Pin 1: GND<br>Pin 2: 5 V <sub>SB</sub> (for PJH-300WBB□)<br>12 V <sub>SB</sub> (for PJH-300WBC□)<br>Pin 3: GND<br>Pin 4: 5 V <sub>SB</sub> (for PJH-300WBB□)<br>12 V <sub>SB</sub> (for PJH-300WBC□) | Pin 5: GND<br>Pin 6: Remote On/Off<br>Pin 7: GND<br>Pin 8: Power Good<br>Pin 9: Remote Sense of V1(-)<br>Pin 10: Remote Sense of V1(+) |

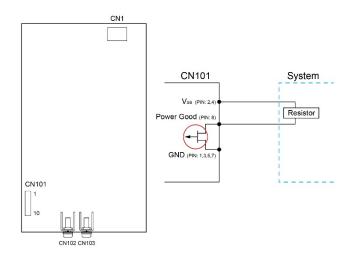

#### Remote On/Off

The Remote On/Off function can be enabling or disable the main output V1 only. Once the pin 6 (Remote On/Off pin) at CN101 pulled down to a low level of 0.3 volts, or shorted to GND (DC-Return), it will be disable V1; and, floated (no connection to the Remote On/Off pin), or pulled up to a value greater than or equal to 3 volts in order to enable the main output V1. When the V1 is disabled, the V<sub>SB</sub> will still continuously operate.



Remote sense feature can be used to compensate for the extra voltage drop on output wires that are connected from the main output terminals, to the load. With wires connected from the remote sense pin 9 and 10 at CN101, at the same locations as the wires from the main output, the remote sense function can compensate up to 500mV voltage drop. The power supply will not be damaged if the remote sense pins are shorted, or if a reverse/inverted polarity connection is made to the load. To use this function, the twisted pair of the Remote Sense pins are recommended.






### Power Good

Power Good pin 8 at CN101 is an open collector transistor. A pullup resistor (suggested value 10 Kohm, 1/8 W) can be added between  $V_{SB}$  pin 2 or pin 4 at CN101 and the Power Good pin 8 (refer to figure below). When AC input is ON, Power Good pin will be high. When AC input is OFF, Power Good pin will be low. There will be a minimum of 5 milliseconds (typical 7-10 milliseconds) at 240 W load between the time the power good goes to low level, and the time when the output reaches 90% of its final steady state set value.







#### **Others**

#### PFC - Norm EN 61000-3-2

#### Line Current Harmonic content



Typically, the input current waveform is not sinusoidal due to the periodical peak charging of the input capacitor. In industrial environment, complying with EN 61000-3-2 is only necessary under special conditions. Complying to this standard can have some technical drawbacks, such as lower efficiency as well as some commercial aspects such as higher purchasing costs. Frequently, the user does not profit from fulfilling this standard, therefore, it is important to know whether it is mandatory to meet this standard for a specific application.

#### Attention

Delta provides all information in the datasheets on an "AS IS" basis and does not offer any kind of warranty through the information for using the product. In the event of any discrepancy between the information in the catalog and datasheets, the datasheets shall prevail (please refer to www.DeltaPSU.com for the latest datasheets information). Delta shall have no liability of indemnification for any claim or action arising from any error for the provided information in the datasheets. Customer shall take its responsibility for evaluation of using the product before placing an order with Delta.

Delta reserves the right to make changes to the information described in the datasheets without notice.

#### **Manufacturer and Authorized Representatives Information**

#### Manufacturer

<u>Thailand</u> Delta Electronics (Thailand) PCL. 909 Pattana 1 Rd., Muang, Samutprakarn, 10280 Thailand

#### Authorized Representatives

<u>The Netherlands</u> Delta Greentech (Netherlands) B.V. Zandsteen 15, 2132 MZ Hoofddorp, The Netherlands <u>Taiwan</u> Delta Electronics, Inc. 3 Tungyuan Road, Chungli Industrial Zone, Taoyuan County 32063, Taiwan

<u>United Kingdom</u> Delta Electronics Europe Limited 1 Redwood Court, Peel Park Campus, East Kilbride, Glasgow, G74 5PF, United Kingdom

