

Product: <u>7924A</u> ☑

DataTuff® Cat 5e, 4 Bonded-Pr #24 Str TC, PO Ins, PVC Jkt, CMX-Outdoor CMR

Product Description

Industrial Ethernet Cat 5e, 4 Bonded-Pair 24AWG (7x32) Tinned Copper, PO Insulation, PVC Outer Jacket, CMX-Outdoor CMR

Technical Specifications

Product Overview

Suitable Applications:	outdoor, harsh environment, IIoT, factory or process automation, IP cameras and devices, data communication, etc.
Patent:	This product has one or more applicable patents. More information on patents can be found at https://www.belden.com/resources/patents

Construction Details

Conductor

A۱	٧G	Stranding	Material	Number of Pairs
24		7x32	TC - Tinned Copper	4

Insulation

Material		Color Code
Polyolefin	White/Blue Stripe	& Blue, White/Orange Stripe & Orange, White/Green Stripe & Green, White/Brown Stripe & Brown
Bonded-P	air:	Yes

Outer Jacket Material

Material	Nom. Diameter	Ripcord
PVC - Polyvinyl Chloride	0.242 in	No

Electrical Characteristics

Electricals

Max. Conductor DCR	Max. DCR Unbalance	Max. Capacitance Unbalance	Nom. Mutual Capacitance	Nom. Velocity of Prop.
9 Ohm/1000ft	3%	66 pF/ft	15 pF/ft	70%

Delay

Max. Delay	Max. Delay Skew	Nom. Velocity of Propagation (VP) [%]
510 ns/100m	25 ns/100m	70%

High Freq

Frequency [MHz]	Max. Insertion Loss (Attenuation)	Min. NEXT [dB]	Min. PSNEXT [dB]	Min. PSACR [dB]	Min. ACRF (ELFEXT) [dB]	Min. PSACRF (PSELFEXT) [dB]	Min. RL (Return Loss) [dB]	Max./Min. Input Impedance (unFitted)	Max./Min. Fitted Impedance
1 MHz	2.4 dB/100m	65.3 dB	65.3 dB	62.9 dB	63.8 dB	60.8 dB	20 dB	100 ± 12 Ohm	105 ± 10 Ohm
4 MHz	4.8 dB/100m	56.3 dB	56.3 dB	51.5 dB	51.7 dB	48.7 dB	23 dB	100 ± 12 Ohm	100 ± 10
8 MHz	6.8 dB/100m	51.8 dB	51.8 dB	45 dB	45.7 dB	42.7 dB	24.5 dB	100 ± 12 Ohm	100 ± 10
10 MHz	7.7 dB/100m	50.3 dB	50.3 dB	42.6 dB	43.8 dB	40.8 dB	25 dB	100 ± 12 Ohm	100 ± 10
16 MHz	9.7 dB/100m	47.3 dB	47.3 dB	37.5 dB	39.7 dB	36.7 dB	25 dB	100 ± 12 Ohm	100 ± 10
20 MHz	11 dB/100m	45.8 dB	45.8 dB	34.8 dB	37.7 dB	34.7 dB	25 dB	100 ± 12 Ohm	100 ± 10
25 MHz	12.4 dB/100m	44.3 dB	44.3 dB	31.9 dB	35.8 dB	32.8 dB	24.3 dB	100 ± 15 Ohm	100 ± 10
31.25 MHz	13.9 dB/100m	42.9 dB	42.9 dB	29 dB	33.9 dB	30.9 dB	23.6 dB	100 ± 15 Ohm	100 ± 10
62.5 MHz	20.2 dB/100m	38.4 dB	38.4 dB	18.3 dB	27.8 dB	24.8 dB	21.5 dB	100 ± 15 Ohm	100 ± 10

100 MHz	26 dB/100m	35.3 dB	35.3 dB	9.2 dB	23.8 dB	20.8 dB	20.1 dB	100 ± 18 Ohm
155 MHz	33.2 dB/100m	32.5 dB	32.5 dB	0 dB	19.9 dB	16.9 dB	19 dB	100 ± 18 Ohm
200 MHz	38.4 dB/100m	30.8 dB	30.8 dB		17.7 dB	14.7 dB	19 dB	100 ± 20 Ohm
250 MHz	43.7 dB/100m	29.3 dB	29.3 dB		15.8 dB	12.8 dB	18 dB	100 ± 20 Ohm
300 MHz	48.6 dB/100m	28.2 dB	28.2 dB		14.2 dB	11.2 dB	18 dB	100 ± 20 Ohm
310 MHz	49.5 dB/100m	27.9 dB	27.9 dB		13.9 dB	10.9 dB	18 dB	100 ± 20 Ohm
350 MHz	53.2 dB/100m	27.2 dB	27.2 dB		12.9 dB	9.9 dB	17 dB	100 ± 22 Ohm

Voltage

UL Voltage Rating
300 V (CMR), 300 V (CMX-Outdoor)

Mechanical Characteristics

Temperature

UL Rating	Operating	Installation	Storage
60°C	-40°C To +75°C	-25°C To +75°C	-25°C To +75°C

Bend Radius

Stationary Min. 0.25 in

Max. Pull Tension: 40 lbs

Bulk Cable Weight: 26 lbs/1000ft

Standards and Compliance

Environmental Suitability:	Indoor/Outdoor, Indoor, Outdoor, Sunlight Resistance, Oil Resistance
Flammability / Fire Resistance:	UL1666 Riser, FT4, FT4, IEC 60332-1-2
NEC / UL Compliance:	800, CMR;CMX-Outdoor
CEC / C(UL) Compliance:	CMX-Outdoor
Data Category:	Category 5e
TIA/EIA Compliance:	ANSI/TIA-568.2-D Category 5e
CPR Euroclass:	Eca
European Directive Compliance:	EU CE Mark, EU Directive 2015/863/EU, EU Directive 2011/65/EU (ROHS II), EU Directive 2012/19/EU (WEEE), REACH: 2020-01-16
APAC Compliance:	China RoHS II (GB/T 26572-2011)

Part Number

Variants

Item #	Color	Putup Type	Length	UPC
7924A 0105000	Black			
7924A 0101000	Black	Reel	1,000 ft	612825191414
7924A 0102000	Black	Reel	2,000 ft	612825191421
7924A 0061000	Blue	Reel	1,000 ft	612825191391
7924A 0081000	Gray	Reel	1,000 ft	612825191407
7924A 0021000	Red	Reel	1,000 ft	612825191384
7924A 1NH1000	Teal	Reel	1,000 ft	612825191438

Product Notes

Notes: EtherNet/IP is a trademark of ControlNet Internation, Ltd. under license by Open DeviceNet Vendor Association, Inc. Operating temperatures are subject to length de-rating. Cable passes -40C Cold Bend per UL 1581.

History

Update and Revision: Revision Number: 0.335 Revision Date: 07-28-2020

© 2020 Belden, Inc

All Rights Reserved

Although Belden makes every reasonable effort to ensure their accuracy at the time of this publication, information and specifications described here in are subject to error or omission and to change without notice, and the listing of such information and specifications does not ensure product availability.

Belden provides the information and specifications herein on an "ASIS" basis, with no representations or warranties, whether express, statutory or implied. In no event will Belden be liable for any damages (including consequential, indirect, incidental, special, punitive, or exemplary damages) whatsoever, even if Belden has been advised of the possibility of such damages, whether in an action under contract, negligence or any other theory, arising out of or in connection with the use, or inability to use, the information or specifications described herein.

All sales of Belden products are subject to Belden's standard terms and conditions of sale.

Belden believes this product to be in compliance with all applicable environmental programs as listed in the data sheet. The information provided is correct to the best of Belden's knowledge, information and belief

at the date of its publication. This information is d Disclosure is not to be considered a warranty or or regulations based on their individual usage of the	esigned only as a general guide for the sat yuality specification. Regulatory information product.	fe handling, storage, and any othen n is for guidance purposes only. Pr	r operation of the product itself or tr oduct users are responsible for det	ne one that it becomes a part of. The ermining the applicability of legislat	e Product ion and