07-1 Basic instruction

last modified by Joey
on 2022/06/11 14:11

Table of Contents

Transfer comparison instruction 3
MOV/16-bit transmission 3
DMOV/32-bit transmission 4
BMOV/Batch transmission 5
FMOV/16-bit multicast 6
DFMOV/ 32-bit multicast 8
SMOV/Bit shift 9
CML/16-bit invert transmission 12
DCML/32-bit invert transmission 14
CMP/16-bit data comparison output 15
DCMP/32-bit data comparison output 17
XCH/16-bit data exchange 18
DXCH/32-bit data exchange 20
ZCP/16-bit data interval comparison 22
DZCP/32-bit data interval comparison 24
Cycle shift instruction 26
ROR/16-bit cycle shift right 26
DROR/32-bit cycle shift right 28
RCR/16-bit cycle shift right with carry 29
DRCR/32-bit cycle shift right with carry 31
ROL/16-bit cycle shift left 33
DROL/32-bit cycle shift left 35
RCL/16-bit cycle shift left with carry 37
DRCL/32-bit cycle shift left with carry 38
SFTR/n-bit shift right of n-bit data 40
SFTL/n-bit shift left of n-bit data 42
WSFR/n-word shift right of n-word data 44
WSFL/n-word shift left of n-word data 45
SFR/n-bit shift right of 16-bit data 47
DSFR/n word data shift right by 1 word 48
SFL/n-bit shift left of 16 -bit data 50
DSFL/one word shift left of n word data 52
Arithmetic operation instructions 54
ADD/16-bit addition operation 54
DADD/32-bit addition operation 55
SUB/16-bit subtraction operation 57
DSUB/32-bit subtraction operation 59
MUL/16-bit multiplication 61
DMUL/32-bit multiplication 62
DIV/16-bit division operation 63
DDIV/32-bit division operation 64
INC/16-bit data increment 66
DINC/32-bit data increment 67
DDEC/32-bit data decrement 69

Transfer comparison instruction

MOV/16-bit transmission

MOV(P)

Transfer the BIN 16-bit data of the device specified in (S) to the device specified in (D).
-[MOV (S) (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	Transmit source data or the device number stored data	-32768 to 32767	Signed BIN16	ANY16_S
(D)	Transmit destination device number	-	Signed BIN16	ANY16_S

Device used

Instructioarameter	Devices									Offset Pulse modificatécotension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
Parameter 1	\bullet	-	\bullet	\bullet	-	\bullet						
MOV Parameter 2	\bullet			\bullet	-							

Features

- Transfer the BIN 16-bit data specified in (S) to the device specified in (D).
(s)

Error code

Error code
4085H

4086H

Content

The output result of (S) in read application instruction exceeds the device range

The output result of (D) in write application instruction exceeds the device range

Example

When M0 is set, the value of D0 is transferred to the value of D2: (D0) $\rightarrow(\mathrm{D} 2)$.

DMOV/32-bit transmission

DMOV(P)

Transfer the BIN 32-bit data of the device specified in (S) to the device specified in (D).
-[DMOV (S) (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	Transmit source data or the device number stored data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(D)	Transmit destination device number	-	Signed BIN32	ANY32_S

Device used

Transfer the BIN 16-bit data specified in (S) to the device specified in (D).
(s) +1
(s)

(d) +1

(d)

Error code

Error code

4086H

Content

The output result of (S) in read application instruction exceeds the device range

The output result of (D) in write application instruction exceeds the device range

Example

When M0 is set, the value of (D1, D0) is transferred to the value of (D3, D2): (D1, D0) \rightarrow (D3, D2).

BMOV/Batch transmission

BMOV(P)

The (N) point BIN 16-bit data starting from the device specified in (S) is sequentially transmitted to the device specified in (D).
-[BMOV (S) (D) (N)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The start device that stores the transmission data	-	Signed BIN16	ANY16_S
(D)	The start device that transmit target	-	Signed BIN16	ANY16_S
(N)	Number of transmission	$1 \leq \mathrm{N} \leq 512$	Signed BIN16	ANY16_S

Device used

Features

Batch transfer the BIN 16-bit data of point (N) starting from the device specified in (S) to the device specified in (D).

When the device number exceeds the range, it will be transferred within the allowable range.
By controlling the direction reversal flag (SM224) of the BMOV instruction, the BIN 16-bit data at point (N) starting from the device specified in (D) can be batch transferred to the device specified in (S).

Error code

Error code
4084 H
4085 H
4086 H

Content

In application instruction (N) input the data exceeds the specified range
The output results of (S) and (N) in read application instruction exceed the device range
The output result of (D) in write application instruction exceeds the device range

Example

When M0 is set, set M1, then (D5) \rightarrow (D10); (D6) \rightarrow (D11); (D7) \rightarrow (D12);
When M0 is reset, set M1, then (D10) \rightarrow (D5); (D11) \rightarrow (D6); (D12) \rightarrow (D7).

FMOV/16-bit multicast

FMOV(P)

Transfer the BIN 16-bit data of the device specified in (S1) to the device specified in (D) at (N) points (that is, transfer the same data to multiple addresses).
-[FMOV (S) (D) (N)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The start device that stores the transmission data	-32768 to 32767	Signed BIN16	ANY16_S
(D)	The start device that transmit target	-	Signed BIN16	ANY16_S
(N)	Number of transmission	$[K 1 \leq N \leq 512]$	Signed BIN16	ANY16_S

Device used

Instructioarameter	Devices									Offset Pulse modificatéoctension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
Parameter 1	\bullet	-	\bullet	\bullet	-	\bullet						
$\begin{gathered} \text { FMOV Parameter } \\ 2 \end{gathered}$	\bullet			\bullet	\bullet							
$\underset{3}{\text { Parameter }}$	\bullet	-										

Features

The same data as the BIN 16-bit data of the device specified in (S) is transferred to the device specified in (D) at (N) points.

When the number specified in (N) exceeds the device number range, transfer is performed within the allowable range.

When a constant (K) is specified for the transmission source (S), it will be automatically converted to BIN.
Error code

Error code
4084H

Content

(S) and(N) input the data In application instruction exceed the specified range

4085H

4086H

The output results of (S) and (N) in read application instruction exceed the device range

The output result of (D) in write application instruction exceeds the device range

Example

When M0 is set, the value of D0 to D4 is set to 0 .

DFMOV/ 32-bit multicast

DFMOV(P)

Transfer the BIN 32-bit data of the device specified in (S1) to the device specified in (D) at (N) points (that is, transfer the same data to multiple addresses).
-[FMOV (S) (D) (N)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	Transfer data or start device storing transfer data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(D)	Start device of transfer destination	-	Signed BIN32	ANY32_S
(N)	Number of transfers	$[1 \leq \mathrm{N} \leq 512]$	Signed BIN32	ANY32_S

Device used
Instructiamameter
Devices
Offset Pulse modificatidansion

Features

The same data as the BIN 32-bit data of the device specified in (S) is transferred to the device specified in (D) at (N) points.

When the number specified in (N) exceeds the device number range, transfer is performed within the allowable range.

When a constant (K) is specified for the transmission source (S), it will be automatically converted to BIN.

Error code

Error code	Content
4084 H	(S) and (N) input the data In application instruction exceed the specified range
4085 H	The output results of (S) and (N) in read application instruction exceed the device range
4086 H	The output result of (D) in write application instruction exceeds the device range

Example

When M0 is set, the value of (D1, D0), (D3, D2), (D5, D4), (D7, D6), (D9, D8) is set to 0 .

SMOV/Bit shift

SMOV(P)

A instruction for distributing and synthesizing data in units of digits (4 bits).
-[SMOV (S) (N1) (N2) (D) (N3)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The word device number that stores the data whose bit is to be moved		Signed BIN16	ANY16_S
(N1)	Transfer destination device number	1 to 4	Signed BIN16	ANY16_S
(N2)	The number of digits to move	1 to 4	Signed BIN16	ANY16_S
(D)	The word device number that stores data for bit shifting		Signed BIN16	ANY16_S
(N3)	The starting position of the moving target	1 to 4	Signed BIN16	ANY16_S

Device used

Features

The data is distributed/combined in units of digits (4 bits). The contents of the transmission source (S) and the transmission destination (D) are converted into 4-digit BCD (0000 to 9999), and the (N1) bits are transferred to the lower (N2) bits and the (N3) bits of the transmission destination (D) (combined) After reaching the starting position, it is converted to BIN and stored in the transfer destination (D).

When the instruction input is OFF, the transfer destination (D) does not change.
When the instruction input is ON, the data of the transmission source (S) and the number of digits other than the transmission specification of the transmission destination (D) do not change.

Perform BIN \rightarrow BCD conversion on (S).

Transfer (synthesize) the (N1)th bit to the lower (N2), (D), (N3)th bit to the (N2)th bit counted from the previous. (D), the first and fourth digits start from (S), and the transmission will not be affected.

Convert the synthesized data (BCD) into BIN and store it in (D).

Extended function

If the SMOV instruction is executed after SM168 is turned ON , the $\mathrm{BIN} \rightarrow \mathrm{BCD}$ conversion will not be performed. The bit shift is performed in 4-bit units.

Error code

Error code	Content
	(N1), (N2) and (N3) input data that exceed the specified range in the application instruction or does not satisfy the relationship of N2 5 N 1 and $\mathrm{N} 2 \leq \mathrm{N} 3$.
4084 H	The output result of (S), (N1) (N2), (D) and (N3) in the read application instruction exceeds the device range
4085 H	The output result of (D) in write application instructions exceeds the device range

Example

After synthesizing the data of the 3-digit digital switch, it is stored in D2 in binary.

Combine data of 3 digital switches connected to non-continuous input terminals.

When MO is set,
(X020 to X027) BCD 2 digits $\rightarrow \mathrm{D} 2$ (binary);
(X000 to X003) BCD 1 digit \rightarrow D 1 (binary);
Store the 1 digit of D 1 into the 3 digit of D 2 , and synthesize a 3-digit value.

CML/16-bit invert transmission

CML(P)

After the BIN 16-bit data specified in (S) is inverted bit by bit, the result is transferred to the device specified in (D).
-[CML (S) (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	Inverted data or the device number that stores data	-32768 to 32767		

Device used

Features

After inverting the BIN 16-bit data specified in (S) bit by bit, the result is transferred to the device specified in (D).
(s)

b15

(d)

0	1	0	0	1	0	1	1	1	0	0	0	1	1	0	1

When the number of digits of the device with the specified digit is 4 points, other digits are not affected.

Error code

Error code	Content
4085 H	The output result of (S) in read application instruction exceeds the device range
4086 H	The output result of (D) in write application instruction exceeds the device range

Example

Example 1:

When M0 is set, the value of D0 is inverted and transferred to the value of D2.
Example 2:
invert input acquisition:

DCML/32-bit invert transmission

DCML(P)

After the BIN 32-bit data specified in (s) is inverted bit by bit, the result is transferred to the device specified in (d).
-[CML (s) (d)]

Content, range and data type

Parameter	Content		
Inverted data or the			
device number that			
stores data		\quad	Range
:---:	\quad	Data type	
:---:	Data type (label)		

Device used

Instrudienam@teric															Pulse ieatiemsion
KnX	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	E	[D]	XXP
DCML Parameer 1	-	-	\bullet	\bullet	-	-	\bullet	-	-	-	\bullet	\bullet		\bullet	\bullet
Parameter 2	-	-	-	-	-	-	-	-	\bullet	-				\bullet	\bullet

Features

After inverting the BIN 32-bit data specified in (s) bit by bit, the result is transferred to the device specified in (d).
(s) +1
(s)
(s)

(d) +1

(d)
(d)

When the number of digits of the device with the specified digit is 4 points, other digits are not affected.

Error code

Error code
4085H
4086H

Content

The output result of (s) in read application instruction exceeds the device range
The output result of (d) in write application instruction exceeds the device range

Example

When M0 is set, the value of (D1, D0) is reversed and transferred to the value of (D3, D2).

CMP/16-bit data comparison output

CMP(P)

Compare the BIN 16-bit data of the device specified in (s1) and (s2).
-[CML (S1) (S2) (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Comparison value data or the device storing the comparison value data	-32768 to +32767	Signed BIN16	ANY16_S
(S2)	Comparison source data or the device storing the comparison source data	-32768 to 32767	Signed BIN16	ANY16_S
(D)	Start bit device for output comparison result	Bit	ANYBIT_ARRAY	

Device used

Instruetioameter Devices | OffsetPulse |
| :---: |
| modificakiension |

Compare the BIN 16-bit data of the device specified in (S1) with the BIN 16-bit data of the device specified in (S2). According to the result (less than, consistent, greater than), (D), (D)+1, (D) One of)+2 will turn ON.
(S1) and (S2) are handled as BIN values within the above setting data range.
Use algebraic methods for size comparison.
(1): Even if the instruction input is OFF and the CMP instruction is not executed, (D) to (D)+2 will keep the state before the instruction input changed from ON to OFF.
\#Note: Occupy the device specified in 3 points (D) at the beginning, please be careful not to overlap with the device used for other control.

Error code

Error code
4085 H
4086 H

Content

The output results of (S1) and (S2) in read application instruction exceed the device range
The output result of (D) in write application instruction exceeds the device range

Example

When M0 is set, compare the values of D0 and D2:
If (D0)> (D2) then Y 0 is ON .
If $(\mathrm{D} 0)=(\mathrm{D} 2)$ then Y 1 is ON . If $(\mathrm{D} 0)<(\mathrm{D} 2)$ then Y 2 is ON .

DCMP/32-bit data comparison output

DCMP(P)

Compare the BIN 32-bit data of the device specified in (S1) and (S2).
-[DCML (S1) (S2) (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Comparison value data or the device storing the comparison value data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(S2)	Comparison source data or the device storing the comparison source data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(D)	Start bit device for output comparison result	Bit	ANYBIT_ARRAY	

Device used

- Compare the BIN 16-bit data of the device specified in (S1) with the BIN 16-bit data of the device specified in (S2). According to the result (less than, consistent, greater than), (D), (D)+1, (D) One of)+2 will turn ON.
- (S1) and (S2) are handled as BIN values within the above setting data range.
- Use algebraic methods for size comparison.
(1): Even if the instruction input is OFF, the DCMP instruction is not executed, (D) to (D)+2 will keep the state before the instruction input changed from ON to OFF.
\#Note: Occupy the device specified in 3 points (D) at the beginning. Please be careful not to overlap with other control devices.

Error code

Error code
 4085H

Content

The output results of (S1) and (S2) in read application instruction exceed the device range
The output result of (D) in write application instruction exceeds the device range

Example

When M0 is set, compare the values of (D1, D0) and (D3, D2):
If (D1, D0)> (D3, D2) then Y0 is ON.
If $(\mathrm{D} 1, \mathrm{D} 0)=(\mathrm{D} 3, \mathrm{D} 2)$ then Y 1 is ON .
If $(\mathrm{D} 1, \mathrm{D} 0)<(\mathrm{D} 3, \mathrm{D} 2)$ then Y 2 is ON .

XCH/16-bit data exchange

$\mathrm{XCH}(\mathrm{P})$

Exchange the BIN 16-bit data of (D1) and (D2).
-[XCH (D1) (D2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D1)	The start device that stores the exchange data	-32768 to 32767	Signed BIN16	ANY16_S
(D2)	The start device that stores the exchange data	-32768 to 32767	Signed BIN16	ANY16_S

Device used

Instructiolparameter		Devices								Offset Pulse modificatioextension	
		KnY	KnM	KnS	T	C	D	R	SD	[D]	XXP
	Parameter 1	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet
XCH	Parameter 2	\bullet									

Features

- Exchange the BIN 16-bit data of (D1) and (D2).

- When executing instructions with SM160 ON, if the device numbers of (D1) and (D2) are the same. Exchange the upper 8 bits (byte) and lower 8 bits (byte) of the word device.

\#Note: If continuous execution instructions are used, conversion will be performed every operation cycle.

Error code

Error code	Content
4084 H	In exchange mode, the devices in (D1) and (D2) are different
4085 H	The output results of (D1) and (D2) in the read application instruction exceed the device range
4086 H	The output results of (D1) and (D2) in the writing application instruction exceed the device range

Example

When M0 is reset, set M1: the value of D0 and the value of D2 are exchanged.

When M0 is set, M1 is set: the upper 8 bits (bytes) and lower 8 bits (bytes) of D0 are exchanged with each other.

DXCH/32-bit data exchange

DXCH(P)

Exchange (D1) and (D2) BIN 32-bit data.
-[DXCH (D1) (D2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D1)	The start device that stores the exchange data	-2147483647 to 2147483647	Signed BIN32	ANY32_S
(D2)	The start device that stores the exchange data	-2147483647 to 2147483647	Signed BIN32	ANY32_S

Device used

Instructi®arameter		Devices								Offset Pulsemodificatiextension		
	KnY	KnM	KnS	T	c	D	R	SD	LC	HSC	[D]	XXP
Parameter 1	-	\bullet	\bullet	\bullet	-	\bullet	\bullet	-	-	-	-	-
Parameter 2	\bullet	-										

Features

- Exchange the BIN 32-bit data of (D1), (D1)+1 and (D2), (D2)+1.
(d1) +1
(d1)

- When executing instructions with SM160 ON, if the device numbers of (D1) and (D2) are the same. Exchange the upper 8 bits (byte) and lower 8 bits (byte) of the word device (D1) and (D1+1).

\#Note: If continuous execution instructions are used, conversion will be performed every operation cycle.
Error code

Error code	Content
4084 H	In exchange mode, the devices in (D1) and (D2) are different
4085 H	The output results of (D1) and (D2) in the read application instruction exceed the device range

The output results of (D1) and (D2) in the writing application instruction exceed the device range

Example:

When M0 is set, M1 is set: the high 8 bits (byte) and low 8 bits (byte) of the D0 Devices are exchanged, and the high 8 bits (byte) and low 8 bits (byte) of the D1 Devices) Exchange each other.

When M0 is reset, set M1: the value of (D1, D0) and the value of (D3, D2) are exchanged.

ZCP/16-bit data interval comparison

ZCP(P)

Compare the BIN 16-bit data of the device specified in (S1) and the value (bandwidth) of the BIN 16-bit data of the device specified in (S2) with the BIN 16-bit data of the device specified in the comparison source (S3), Output the result (bottom, area, top) to the device specified in (D) and later.

```
-[ZCP (S1) (S2) (S3) (D)]
```


Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	The comparison value data of low limit or the device that stores the comparison value data	-32768 to 32767	Signed BIN16	ANY16_S
(S2)	The comparison value data of high limit or the device that stores the comparison value data	-32768 to 32767	Signed BIN16	ANY16_S
(S3)	Comparison source data or the device that stores the comparison source data	-32768 to 32767	Signed BIN16	ANY16_S
(D)	The start bit device of output comparison result	Bit	ANYBIT_ARRAY	

Device used

Features

- Compare the BIN 16-bit data of the device specified in (S1) and the value (bandwidth) of the BIN 16-bit data of the device specified in (S2) with the BIN 16-bit data of the device specified in the comparison source (S3), According to the result (bottom, area, top), one of (D), (D)+1, (D)+2 will be turned ON. (S1), (S2), (S3) are treated as BIN values within the above-mentioned setting data range. Use algebraic methods for size comparison.
- Use algebraic methods for size comparison.

(1): Even if the instruction input is OFF and the ZCP instruction is not executed, (D) to (D)+2 will keep the state before the instruction input turns from ON to OFF.

\#Note:

- Please set the lower comparison value (S1) to a value smaller than the upper comparison value (S2).
- When (s1) is greater than (S2), it will be processed as (S2)=(S1).
- The device specified in 3 points (d) is occupied at the beginning. Please be careful not to overlap with other control devices.

Error code

Error code
4085H
4086H

Content

The output results of (S1), (S2) and (S3) in the read application instruction exceed the device range
The output result of (D) in write application instructions exceeds the device range

Example

When MO is set, compare whether DO is between 0 and 1000:
If (D0)> (1000), then YO is ON.
If $(0) \leq(D 0) \leq(1000)$, then Y 1 is ON .
If $(\mathrm{DO})<(0)$, then Y 2 is ON .

DZCP/32-bit data interval comparison

DZCP(P)

Compare the BIN 32-bit data of the device specified in (S1) and the value (bandwidth) of the BIN 32-bit data of the device specified in (S2) with the BIN 32-bit data of the device specified in the comparison source (S3), Output the result (bottom, area, top) to the device specified in (D) and later.
-[DZCP (S1) (S2) (S3) (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	The comparison value data of low limit or the device that stores the comparison value data	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	Signed BIN32	ANY32_S
(S2)	The comparison value data of high limit or the device that stores the comparison value data	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	Signed BIN32	ANY32_S
(S3)	Comparison source data or the device that stores the comparison source data	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	Signed BIN32	ANY32_S
(D)	The start bit device of output comparison result		Bit	ANYBIT_ARRAY

Device used

InstruRairameter			Devices														OffsePulse modifieatiension		
Y	M	S	SM	D.b	KnX	KnY	KnM KnS	T	c	D	R	SD	LC	HSC	K	H	E		XXP
Parameter 1					-	\bullet	- -	\bullet	-	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet	-	-	\bullet
DZCParameter 2					\bullet	\bullet	- -	\bullet	-	\bullet									

- Compare the BIN 32-bit data of the device specified in (S1) and the value (bandwidth) of the BIN 32-bit data of the device specified in (S2) with the BIN 32-bit data of the device specified in the comparison source (S3), According to the result (bottom, area, top), one of (D), (D)+1, (D)+2 will be turned ON. (S1), (S2), (S3) are treated as BIN values within the above-mentioned setting data range. Use algebraic methods for size comparison.
- Use algebraic methods for size comparison.

(1): Even if the instruction input is OFF and the ZCP instruction is not executed, (D) to (D)+2 will keep the state before the instruction input turns from ON to OFF.
\#Note:
- Please set the lower comparison value (S1) to a value smaller than the upper comparison value (S2).
- When (S1) is greater than (S2), it will be processed as $(\mathrm{S} 2)=(\mathrm{S} 1)$.
- The device specified in 3 points (D) is occupied at the beginning. Please be careful not to overlap with other control devices.

Error code
Error code
4085 H
4086 H

Example

When M0 is set, compare D0 with whether it is between 0 and 100000:
If (D0)> (100000), then YO is ON .
If $(0) \leq(D 0) \leq(100000)$, then Y 1 is ON .
If $(\mathrm{DO})<(0)$, then Y 2 is ON .

Cycle shift instruction

ROR/16-bit cycle shift right

ROR(P)

Shift the 16-bit data of the device specified in (D) to the right by (N) bits without including the carry flag.
-[ROR (D) (N)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	$\begin{array}{l}\text { The device start number } \\ \text { for cycle shift right }\end{array}$	-	Signed BIN 16 bit	

Device used

Features

- The 16-bit data of the device specified in (D) is shifted right by (N) bits without including the carry flag. The carry flag is in the ON or OFF state according to the state before the $\operatorname{ROR}(P)$ is executed.

(N) Specifies 0 to 15 . When a value of 16 or more is specified in (N), the remainder value of $(N) \div 16$ is shifted to the right. For example, when $(\mathrm{N})=18,18 \div 16=1$ and the remainder is 2 , so a 2 -bit right shift is performed.

Related device

SM151

Name
Carry

Content

It turns ON when the last bit shifted from the lowest is 1 .

\#Note:

Do not set the number of digits (N) shifted right to a negative value.
In the case of continuous execution type instructions (ROR, RCR), the right shift will be executed every scan time (operation cycle), so be careful.

When specifying the number of digits to specify the device in (D), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	Content
4084 H	A negative value is specified in (N).
4085 H	The output results of (D) and (N) in the read application instruction exceed the device range
4086 H	The output result of (D) in the write application instruction exceeds the device range

Example

Shift the 1 in the D0 device by 3 bits to the right to get 8192 .

DROR/32-bit cycle shift right

DROR(P)

Shift the 32-bit data of the device specified in (D) to the right by (N) bits without including the carry flag.

```
-[DROR (D) (N)]
```


Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	The device start number for cycle shift right	-	Signed BIN 32 bit	

Device used

Features

- The 32-bit data of the device specified in (D) is shifted right by (N) bits without including the carry flag. The carry flag is on or off according to the state before $\operatorname{DROR}(\mathrm{P})$ is executed.

(N) Specifies 0 to 31 . When a value of 32 or more is specified in (N), the remainder of $(\mathrm{N}) \div 32$ is shifted to the right. For example, when $(\mathrm{N})=34,34 \div 32=1$ and the remainder is 2 , so a 2 -bit right shift is performed.

Related device

Device

SM151

Name

Carry

Content

It turns ON when the last bit shifted from the lowest is 1 .

\#Note:

Do not set the number of digits (N) shifted right to a negative value.
In the case of continuous execution type instructions (ROR, RCR), the right shift will be executed every scan time (operation cycle), so be careful. When specifying the number of digits to specify the device in (D), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	Content
4084 H	A negative value is specified in (N).
4085 H	The output results of (D) and (N) in the read application instruction exceed the device range
4086 H	The output result of (D) in the write application instruction exceeds the device range

After the rising edge of M 1 is triggered, the value 32 of the D 0 device is shifted right by 3 bits to get 4 .

Example

RCR/16-bit cycle shift right with carry

```
RCR(P)
```

Shift the 16-bit data of the device specified in (D) to the right by (N) bits with the carry flag included.
$-[R C R(D)(N)]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	The device start number for cycle shift right	-	Signed BIN 16 bit	

Device used

Instructiöarameter	Devices									Offset Pulse modificateoctension		
	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
Parameter 1	\bullet			-	\bullet							
$\begin{gathered} \text { RCR } \begin{array}{c} \text { Parameter } \\ 2 \end{array} \bullet \end{gathered}$	\bullet	-										

Features

Shift the BIN 16-bit data of the device specified in (D) to the right by (N) bits with the carry flag included. The carry flag is on or off according to the state before the RCR(P) is executed.

(N) Specifies 0 to 15 . When a value of 16 or more is specified in (N), the remainder value of $(N) \div 16$ is shifted to the right. For example, when $(\mathrm{N})=18,18 \div 16=1$ and the remainder is 2 , so a 2-bit right shift is performed.

Related device

Device
Name
Content

SM151

\#Note:

Do not set the number of digits (N) shifted right to a negative value.
In the case of continuous execution type instructions (ROR, RCR), the right shift will be executed every scan time (operation cycle), so be careful.

When specifying the number of digits to specify the device in (D), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	Content
4084 H	A negative value is specified in (N)
4085 H	The output results of (D) and (N) in the read application instruction exceed the device range
4086 H	The output result of (D) in the write application instruction exceeds the device range

Example

After the rising edge of M0 is triggered, the carry flag SM151 turns ON, and D0 is assigned the value 1 . When $\mathrm{M} 1=\mathrm{ON}$, the value in the D0 device is shifted right by 4 bits to get 12288.

DRCR/32-bit cycle shift right with carry

DRCR(P)

Shift the 32-bit data of the device specified in (D) to the right by (N) bits with the carry flag included.
-[DRCR (D) (N)]

Content, range and data type

| Parameter | Content |
| :---: | :--- | :---: | :---: | :---: |\quad Range \quad Data type \quad Data type (label)

Device used

Instruction	Parameter	KnX	KnY	KnM	KnS
	Parameter 1		\bullet	\bullet	\bullet
DRCR	Parameter 2	\bullet	\bullet	\bullet	\bullet

Features

- The BIN 32-bit data of the device specified in (D) is shifted right by (N) bits with the carry flag included. The carry flag is in the ON or OFF state according to the state before $\operatorname{DRCR}(P)$ is executed.

(N) Specifies 0 to 31 . When a value of 32 or more is specified in (N), the remainder value of $(\mathrm{N}) \div 32$ is shifted to the right. For example, when $(N)=34,34 \div 32=1$ and the remainder is 2 , so a 2 -bit right shift is performed.

Related device

Devices

Name

Carry

Content

It turns ON when the last bit shifted from the lowest is 1 .

\#Note:

Do not set the number of bits (N) to turn right to a negative value.
In the case of continuous execution type instructions (DROR, DRCR), the right shift will be executed every scan time (operation cycle), so be careful. When specifying the number of digits to specify the device in (D), only K4 (16bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	Content
4084 H	A negative value is specified in (N).
4085 H	The output results of (D) and (N) in the read application instruction exceed the device range
4086 H	The output result of (D) in the write application instruction exceeds the device range

Example

After the rising edge of M0 is triggered, the carry flag SM151 turns ON, and D0 is assigned the value 1 . When $\mathrm{M} 1=\mathrm{ON}$, the value in the D0 device is shifted right by 20 bits to get 12288 .

ROL/16-bit cycle shift left

ROL(P)
Shift the 16-bit data of the device specified in (D) to the left by (N) bits without including the carry flag.
$-[R O L(D)(N)]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	The device start number for cycle shift left	-	Signed BIN 16 bit	ANY16
(N)	The number of times to cycle shift left	0 to 15	Signed BIN 16 bit	ANY16

Device used

Instructiozarameter	Devices									Offset Pulse modificatécabension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
Parameter 1	\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	-			-	-
	\bullet	-	-									

Features

- The 16-bit data of the device specified in (D) is shifted to the left by (N) bits without including the carry flag. The carry flag is in the ON or OFF state according to the state before $\mathrm{ROL}(\mathrm{P})$ is executed.

(N) Specify 0 to 15 . When a value of 16 or more is specified in (N), the remainder value of $(\mathrm{N}) \div 16$ is shifted to the left. For example, when $(N)=18,18 \div 16=1$ and the remainder is 2 , so a 2 -bit left shift is performed.

Related device

Device	Name
SM151	Carry

Content

It turns ON when the last bit shifted from the highest is 1 .

\#Note:

Do not set the number of digits (N) shifted to the left to a negative value. In the case of continuous execution type instructions (ROL, RCL), the shift to the left will be executed every scan time (operation cycle), so be careful. When specifying the number of digits to specify the device in (D), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	Content
4084 H	A negative value is specified in (N). 4085 H
The output results of (D) and (N) in the read application instruction exceed the device range	
4086 H	The output result of (D) in the write application instruction exceeds the device range

Example

Shift 1 in the D0 device to the left by 3 bits to get 8 .

DROL/32-bit cycle shift left

DROL(P)

Shift the 32-bit data of the device specified in (D) to the left by (N) bits without including the carry flag.
-[DROL (D) (N)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	$\begin{array}{l}\text { The device start number } \\ \text { for cycle shift left }\end{array}$	-	Signed BIN 32 bit	

Device used

InstrucfiamameterKn	Devices											Offset Pulse modificatidansion		
	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	[D]	XXP
Parameter 1	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	-			\bullet	\bullet
${ }^{\text {DROL }}$ Parameter 2	\bullet													

Features

- The 32-bit data of the device specified in (D) is shifted left by (N) bits without including the carry flag. The carry flag is on or off according to the state before $\operatorname{DROL}(P)$ is executed.

(N) Specifies 0 to 31 . When a value of 32 or more is specified in (N), the remainder of $(\mathrm{N}) \div 32$ is shifted to the left. For example, when $(N)=34,34 \div 32=1$ and the remainder is 2 , so a 2 -bit left shift is performed.

Related device

Device	Name	Content
SM151	Carry	It turns ON when the last bit shifted from the highest is 1.

\#Note:

Do not set the number of digits (N) shifted to the left to a negative value.
In the case of continuous execution type instructions (ROL, RCL), the shift to the left will be executed every scan time (operation cycle), so be careful. When specifying the number of digits to specify the device in (D), only K4 (16bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	Content
4084 H	A negative value is specified in (N).
4085 H	The output results of (D) and (N) in the read application instruction exceed the device range
4086 H	The output result of (D) in the write application instruction exceeds the device range

Example

Shift 1 in the D0 device to the left by 3 bits to get 8 .

RCL/16-bit cycle shift left with carry

RCL(P)

Shift the 16-bit data of the device specified in (D) to the left by (N) bits with the carry flag included.
-[RCL (D) (N)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	The device start number for cycle shift left	-	Signed BIN 16 bit	

Device used

Instructiozarameter	Devices									Offset Pulse modificatéectension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
Parameter 1	\bullet	-			-	-						
RCL Parameter 2	\bullet	-										

Features

. The 16-bit data of the device specified in (D) is shifted (N) to the left with the carry flag included. The carry flag is on or off according to the state before $R C L(P)$ is executed.

(N) Specifies 0 to 15 . When a value of 16 or more is specified in (N), the remainder value of $(N) \div 16$ is shifted to the left. For example, when $(N)=18,18 \div 16=1$ and the remainder is 2 , so a 2 -bit left shift is performed.

Related device

Device	Name
SM151	Carry

Content

It turns ON when the last bit shifted from the highest is 1 .

\#Note:

Do not set the number of digits (N) shifted to the left to a negative value. In the case of continuous execution type instructions (ROL, RCL), the shift to the left will be executed every scan time (operation cycle), so be careful. When specifying the number of digits to specify the device in (D), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

After the rising edge of M0 is triggered, the carry flag SM151 turns ON, and D0 is assigned the value 1.
When $\mathrm{M} 1=\mathrm{ON}$, move the value in the D0 device with carry to the left by 4 bits to get 24 .

DRCL/32-bit cycle shift left with carry

DRCL(P)

Move the 32-bit data of the device specified in (D) to the left by (N) bits with the carry flag included.

```
-[DRCL (D) (N)]
```

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	$\begin{array}{l}\text { The device start number } \\ \text { for cycle shift left }\end{array}$	-	Signed BIN 32 bit	

Device used

Features

The 32-bit data of the device specified in (D) is shifted (N) to the left with the carry flag included. The carry flag is on or off according to the state before $\operatorname{RCL}(\mathrm{P})$ is executed.

(N) Specifies 0 to 31 . When a value of 32 or more is specified in (N), the remainder of $(\mathrm{N}) \div 32$ is shifted to the left. For example, when $(N)=34,34 \div 32=1$ and the remainder is 2 , so a 2 -bit left shift is performed.

Related device

Devices	Name	Content
SM151	Carry	Turns ON when the last bit shifted from the highest is 1.

\#Note:

Do not set the number of digits (N) shifted to the left to a negative value. In the case of continuous execution type instructions (ROL, RCL), the shift to the left will be executed every scan time (operation cycle), so be careful. When specifying the number of digits to specify the device in (D), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code
4084 H
4085 H
4086 H

Content

A negative value is specified in (N).
The output results of (D) and (N) in the read application instruction exceed the device range
The output result of (D) in the write application instruction exceeds the device range

Example

After the rising edge of M0 is triggered, the carry flag SM151 turns ON, and D0 is assigned the value 1 . When $\mathrm{M} 1=\mathrm{ON}$, carry the value in the D0 device to the left by 4 bits to get 24 .

SFTR/n-bit shift right of n -bit data

SFTR(P)

Shift (N2) the data of the start (N1) bits of the device specified in (D) to the right.
-[SFTR (S) (D) (N1) (N2)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The start number of the device storing the shifted data after shifting	-	Bit	ANY_BOOL
(D)	The shifted device start number	-	Bit	ANY_BOOL
(N1)	The length of shifted data	0 to 32767	Signed BIN 16 bit	ANY16
(N2)	Number of shifts	0 to 32767	Signed BIN 16 bit	ANY16

Device used

Features

Shift (N2) the data of the start (N1) bits of the device specified in (D) to the right. After shifting, the point (N2) starting from (S) is transferred to the point (N2) starting from (D) + (N1 to N2).

When K 0 is specified in (S), the bit of the (D) + (N1 to N2) starting point (N2) after the shift is set to 0 .
When K 1 is specified in (S), the bit of the $(\mathrm{D})+(\mathrm{N} 1$ to N 2$)$ starting point $(\mathrm{N} 2)$ after the shift is set to 1 .

(1)
(1): When $(S)=K 0$, it becomes 0 .

Error code

Error code	Content
	When the value specified in (N1) and (N2) exceeds the range of 0 to 32767 4084 H
	When the value specified in (N1) and (N2) is (N1)<(N2)
When the device specified in read application instructions (S),	
4085 H	(D), (N1) and (N2) exceeds the corresponding device range 4086 H
	When the device specified in the write application instruction
(D) exceeds the corresponding device range	

Example

For N1 $=9$ bits (the length of the shift register) data starting with M0, right shift $\mathrm{N} 2=3$ bits. After shifting, transfer $\mathrm{N} 2=3$ bits from Y 0 to $\mathrm{N} 2=3$ bits from M6.

SFTL/n-bit shift left of \mathbf{n}-bit data

SFTL(P)

Shift the start (N1) bit data of the device specified in (D) to the left by (N2) bits.
-[SFTL (S) (D) (N1) (N2)]
Content, range and data type

Parameter	Content			
(S)	The start number of the device storing shifted data after shifting	Range	Data type	Data type (label)
(D)	The shifted device start number	-	Bit	ANY_BOOL
(N1)	The length of shifted data	0 to 32767	Bigned BIN 16 bit	ANY_BOOL
(N2)	Number of shifts	0 to 32767	Signed BIN 16 bit	ANY16

Device used

Features

Shift（N2）bits of the data at the beginning（N1）bits of the device specified in（D）．After shifting，the point（N2） starting from（S）is transferred to the point（N2）starting from（D）＋（N1 to N2）．

When K 0 is specified in (S) ，the bit of the $(\mathrm{D})+(\mathrm{N} 1$ to N 2$)$ starting point（N2）after the shift is set to 0 ．
When K 1 is specified in (S) ，the bit of the $(\mathrm{D})+(\mathrm{N} 1$ to N 2$)$ starting point（N2）after the shift is set to 1 ．

（1）
（1）：（s）＝K0的情况下，变为 0 。
（1）：When $(S)=K 0$ ，it becomes 0 ．
Error code

Error code	Content
4084H	When the value specified in（ N 1 ）and（ N 2 ）exceeds the range of 0 to 32767
	When the value specified in（ N 1 ）and（ N 2 ）is（ N 1 ）＜（ N 2 ）
4085H	When the device specified in read application instructions（S）， （D），（N1）and（N2）exceeds the corresponding device range
4086H	When the device specified in the write application instruction （D）exceeds the corresponding device range

Example

Example 1：

Example 2：

WSFR/n-word shift right of n-word data

WSFR(P)

Shift (N2) the data of the start (N1) bits of the device specified in (D) to the right.
-[WSFR (S) (D) (N1) (N2)]

Content, range and data type

Parameter	Content			
(S)	The start number of the device storing shifted data after shifting	Range	Data type	Data type (label)
(D)	The shifted device start number	-	word	ANY_BOOL
(N1)	The length of shifted data	0 to 32767	word	ANY_BOOL
(N2)	Number of shifts	0 to 32767	Signed BIN 16 bit	ANY16

Device used

Features

Shift (N2) the data of the beginning (N1) word of the device specified in (D) to the right. After shifting, the point (N2) starting from (S) is transferred to the point (N2) starting from (D) + (N1 to N2).

When K is specified in (S), the device at (D) + (N1 to $N 2$) starting (N2) point after shifting is set to the specified value.

If the value specified in (N1) or (N2) is 0 , it will be no processing.

Error code

Error code	Content
	When the value specified in (N 1) and (N 2) exceeds the range of 0 to 32767
4084H	When the value specified in (N1) and (N2) is (N1)<(N2)
	When (S) and (D) both specify KnM, KnX, and KnS, the value of n varies.
4085H	When the device specified in read application instructions (S), (D), (N1) and (N2) exceeds the corresponding device range
4086H	When the device specified in the write application instruction (D) exceeds the corresponding device range

Example

(S) and (D) specify the same multiple in the digit specified device. This program realizes to shift Y 0 to Y 7 bits right, shift Y 10 to Y 17 right to Y 0 to Y 7 , and then store X 0 to X 7 to Y 10 to Y 17 .

WSFL/n-word shift left of n-word data

WSFL(P)

Shift the start (N1) bit data of the device specified in (D) to the left by (N2) bits.
-[WSFL (S) (D) (N1) (N2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The start number of the device storing shifted data after shifting	-	Word	ANY_BOOL
(D)	The shifted device start number	-	Word	ANY_BOOL
(N1)	The length of shifted data	0 to 32767	Signed BIN 16 bit	ANY16
(N2)	Number of shifts	0 to 32767	Signed BIN 16 bit	ANY16

Device used

Features

Shift (N2) the data of the beginning (N1) word of the device specified in (D) to the left. After shifting, transfer the point (N2) starting from (S) to the point (N2) starting from (D).

When K is specified in (S), the device at (D) + (N1 to N2) starting (N2) point after shifting is set to the specified value.

If the value specified in (N1) or (N2) is 0 , it will be no processing.

Error Code

Error code
4084 H
4085 H
4086 H

Content

When the value specified in (N1) and (N2) exceeds the range of 0 to 32767
When the value specified in (N1) and (N2) is (N1)<(N2)
When (S) and (D) both specify $\mathrm{KnM}, \mathrm{KnX}$, and KnS , the value of n varies.
When the device specified in read application instructions (S), (D), (N1) and (N2) exceeds the corresponding device range

When the device specified in the write application instruction (D) exceeds the corresponding device range

Example

(S), (D) Do the same multiple specification in the digit specification device. This program realizes to remove the high bits of Y 10 to Y 17 left, move Y 0 to Y 7 left to Y 10 to Y 17 , and then store X 0 to X 7 to Y 0 to Y 7 .

SFR/n-bit shift right of 16-bit data

SFR(P)

Shift the 16-bit data of the device specified in (D) right by (N) bits.
-[SFR (D) (N)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	The start number of the device storing the shifted data	-	Signed BIN 16 bit	ANY16
(N)	Number of shifts	$0-15$	Signed BIN 16 bit	ANY16

Device used

SFR ${ }^{1}$
Param

Features

When $(N)=6$
Shift the 16-bit data of the device specified in (D) to the right (N) bits from the highest bit. The (N) bit from the most significant bit will become 0 .
(d)

When $(N)=6$
When a bit device is specified in (d), the device range specified in the digit specification is shifted to the right.

(N) Specifies 0 to 15 . When a value of 16 or more is specified in (N), the remainder of $(N) \div 16$ is shifted to the left. For example, when $(N)=18,18 \div 16=1$ and the remainder 2 , so it is shifted by 2 bits to the right.

Related device\

Device

SM151

Name
Carry

Content

Set to ON/OFF according to the state of $\mathrm{N}-1$ bit ($1 / 0$)

Error code

Error code
4084 H
4085 H
4086 H

Content

A negative value is specified in (N).
The output results of (D) and (N) in the read application instruction exceed the device range The output result of (D) in the write application instruction exceeds the device range

Example

When M 1 is ON , the contents of Y 10 to Y 23 are shifted to the right by the number of digits specified in D 0 .

K4
D0]

DSFR/n word data shift right by 1 word

DSFR(P)

Shift the data at the start (N) point of the device specified in (D) to the right by 1 word.
-[DSFR (D) (N)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	The start number of the device storing the shifted data	-	Signed BIN 16 bit	ANY16

(N)	Number of shifts			0 to 32767			Signed BIN 16 bit			ANY16		
Device used												
Instructioarameter					Devices							Pulse Pension
KnX	KnY	KnM	KnS	T	c	D	R	SD	K	H	[D]	XXP
Parameter 1	\bullet			-	-							
Parameter 2	\bullet											

Features

- Shift the data at the start (N) point of the device specified in (D) by 1 word to the right.

- The device specified in $(\mathrm{D})+(\mathrm{N}-1)$ will become 0 .
\#Note: $\ln (\mathrm{D})$, when specifying the device number by specifying the number of bits of the bit device, the device number should be a multiple of $16(0,16,32,64 \ldots)$, and only K4 should be specified for the number of bits. When the number of bits is not $\mathrm{K} 4, \mathrm{~K} 4$ is used for processing.

Error code

Error code	Content
4084 H	When the value specified in (N) exceeds the range of 0 to 32767
4085 H	The output results of (D) and (N) in the read application instruction exceed the device range
4086 H	The output result of (D) in the write application instruction exceeds the device range

Example

When M 1 is ON , shift the contents of D 0 to D 4 to the right by 1 word $(\mathrm{D} 1 \rightarrow \mathrm{D} 0, \mathrm{D} 2 \rightarrow \mathrm{D} 1, \mathrm{D} 3 \rightarrow \mathrm{D} 2, \mathrm{D} 4 \rightarrow \mathrm{D} 3, \mathrm{D} 4$ is set to 0).

Before execution:

After execution:

SFL/n-bit shift left of 16-bit data

SFL(P)

Shift the 16-bit data of the device specified in (D) to the left by (N) bits.
-[SFL (D) (N)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	The start number of the device storing the shifted data	-	Signed BIN 16 bit	ANY16
(N)	Number of shifts	0 to 15	Signed BIN 16 bit	ANY16

Device used

Instructioarameter		Devices									Offset Pulse modificatecotension		
	KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
Parameter 1		\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet			\bullet	\bullet
Parameter 2	\bullet												

Features

Shift the 16-bit data of the device specified in (D) to the left (N) bits from the lowest bit. The (N) bit from the lowest bit will become 0 .

When $(N)=8$, it is as follows.

When a bit device is specified in (D), the left shift is performed in the device range specified in the digit specification.

When $(\mathrm{N})=3$, it is as follows.
(N) Specify 0 to 15 . When a value of 16 or more is specified in (N), the remainder of $(N) \div 16$ is shifted to the left. For example, when $(N)=18,18 \div 16=1$ remainder 2 , so it is shifted by 2 bits to the left.

Related device\

Device

SM151

Name
Carry

Content

Turn ON/OFF according to the state of N +1 bit (1/0)

Error code

Error code
4084 H
4085 H
4086 H

Content

A negative value is specified in (N).
The output results of (D) and (N) in the read application instruction exceed the device range
The output result of (D) in the write application instruction exceeds the device range

Example

When M 1 is ON , the contents of Y 10 to Y 17 are shifted to the left by the number of digits specified in D0.

DSFL/one word shift left of \mathbf{n} word data

DSFL(P)

Move the data at the beginning (N) point of the device specified in (D) by 1 word to the left.

```
-[DSFL (D) (N)]
```


Content, range and data type

| Parameter | Content |
| :---: | :---: | :---: | :---: | :---: |
| The start number of | |\quad Range \quad Data type \quad Data type (label)

Device used

InstructioarameterKn	Devices									Offset Pulse modificatéextension		
	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
Parameter 1	\bullet	-			-	\bullet						
DSFL Parameter 2	\bullet	-										

Features

Shift the data at the start (N) point of the device specified in (D) to the left by 1 word.

The device specified in (D) will become 0 .
\#Note: In (D), when specifying the device number by specifying the number of bits of the bit device, the device number should be a multiple of $16(0,16,32,64 \ldots)$, and only K4 should be specified for the number of bits. When the number of bits is not $\mathrm{K} 4, \mathrm{~K} 4$ is used for processing.

Error code

Error code	Content
4084 H	When the value specified in (N) exceeds the range of 0 to
	32,767
4085 H	The output results of (D) and (N) in the read application instruction exceed the device range
4086 H	The output result of (D) in the write application instruction exceeds the device range

Example

When M1 is ON, shift the contents of D0 to D4 to the left by 1 word $(\mathrm{D} 3 \rightarrow \mathrm{D} 4, \mathrm{D} 2 \rightarrow \mathrm{D} 3, \mathrm{D} 1 \rightarrow \mathrm{D} 2, \mathrm{D} 0 \rightarrow \mathrm{D} 1, \mathrm{D} 0$ is set to 0).

Before execution:

After execution:

Arithmetic operation instructions

ADD/16-bit addition operation

ADD(P)

Add the BIN 16-bit data specified in (S1) and the BIN 16-bit data specified in (S2), and store the result in the device specified in (D).
-[ADD (S1) (S2) (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Addition operation data or the device storing the addition data	-32768 to 32767	Signed BIN16	ANY16_S
(S2)	Addition operation data or the device storing the addition data	-32768 to 32767	Signed BIN16	ANY16_S
(D)	Device for storing operation results	Signed BIN16	ANY16_S	

Device used

Instructiöarameter	Devices									Offset Pulse modificatécotension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
$\underset{1}{\text { Parameter }}$	\bullet	\bullet	\bullet	-	\bullet	-	-	-	\bullet	\bullet	-	\bullet
$\text { ADD } \begin{gathered} \text { Parameter } \\ 2 \end{gathered} \bullet$	\bullet	\bullet	\bullet	\bullet	\bullet	-	-	-	\bullet	\bullet	\bullet	\bullet
Parameter 3	\bullet	\bullet	\bullet	\bullet	\bullet	-	-	\bullet			\bullet	\bullet

Add the BIN 16-bit data specified in (S1) and the BIN 16-bit data specified in (S2), and store the result of the addition in the device specified in (D).

Related device\

Devices	Name
SM151	Carry
SM152	Borrow
SM153	Zero point

Content

When the operation result exceeds 32,767 , the carry flag will be (ON).
When the operation result is less than $-32,768$, the borrow flag will be (ON).
When the operation result is 0 , the zero flag will be (ON).

\#Note:
1.When the source operand and destination operand are specified as the same device:

The source operand and destination operand can also be specified as the same device number.
In this case, if you use continuous execution instructions (ADD, DADD), the result of the addition operation will change every operation cycle.
2. The difference between the ADD instruction and the INC instruction using the +1 addition operation program: ADD[P] means that every time X001 changes from OFF to ON, the content of D0 is added by one operation.

Although this instruction is very similar to the INCP instruction described later, there are some differences in the following content.

Error code

Error code
 4085H
 4086H

Content

The output results of (S1) and (S2) in the read application instruction exceed the device range
The output result of (D) in the write application instruction exceeds the device range

Example

Add 10 to the data in (D0), and store the operation result in (D2), that is, (D0) $+10 \rightarrow$ (D2).

DADD/32-bit addition operation

DADD(P)

Add the BIN32-bit data specified in (S1) and the BIN32-bit data specified in (S2), and store the result in the device specified in (D).

```
-[DADD (S1) (S2) (D)]
```


Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Addition data or the device storing the addition data	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	Signed BIN32	ANY32_S
(S2)	Addition data or the device storing the addition data	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	Signed BIN32	ANY32_S
(D)	Device for storing operation results		Signed BIN32	ANY32_S

Device used

Add the BIN32-bit data specified in (s1) and the BIN32-bit data specified in (s2), and store the result of the addition in the device specified in (d).

Related device\

Devices	Name
SM151	Carry
SM152	Borrow
SM153	Zero point

Content

When the operation result exceeds 32,767 , the carry flag will be (ON).

When the operation result is less than $-32,768$, the borrow flag will be (ON).
When the operation result is 0 , the zero flag will be (ON).

\#Note:

1. When the source operand and destination operand are specified as the same device:

The source operand and destination operand can also be specified as the same device number.
In this case, if you use continuous execution instructions (ADD, DADD), the result of the addition operation will change every operation cycle. Please note.
2. The difference between the ADD instruction and the INC instruction using the +1 addition operation program: ADD[P] means that every time X001 changes from OFF to ON, the content of D0 is added by one operation. Although this instruction is very similar to the INCP instruction described later, there are some differences in the following content.

| | | ADD/ADDP/DADD/
 DADDP instructions | INC/INCP/DINC/
 DINCP instructions |
| :--- | :---: | :---: | :---: | :---: |
| Flag bit (zero, borrow, carry) | | Action | No action |

Error code

\[

\]

Example

Add 100000 to the data in (D1, D0), and store the result of the operation in (D3, D2), that is, (D1, D0) $+100000 \rightarrow$ (D3, D2).

SUB/16-bit subtraction operation

SUB(P)

Subtract the BIN 16-bit data specified in (S1) and the BIN 16-bit data specified in (S2), and store the result in the device specified in (D).
-[SUB (S1) (S2) (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	The subtraction data or the device storing the subtraction data	-32768 to 32767	Signed BIN16	ANY16_S
(S2)	The subtraction data or the device storing the subtraction data	-32768 to 32767	Signed BIN16	ANY16_S
(D)	Device for storing calculation results		Signed BIN16	ANY16_S

Device used

Instructioarameter	Devices									Offset Pulse modificatécatension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP

Subtract the BIN 16-bit data specified in (S1) and the BIN 16-bit data specified in (S2), and store the result of the operation in the device specified in (D).

Related device\

Devices	Name	Content
SM151	Carry	When the operation result exceeds 32,767, the carry flag will be (ON).
SM152		When the operation result is less than $-32,768$, the borrow flag will be (ON).
SM153	Borrow	When the operation result is 0, the zero flag will be (ON).

\#Note:

1. When the source operand and destination operand are specified as the same device:

The source operand and destination operand can also be specified as the same device number.
In this case, if continuous execution type instructions (SUB, DSUB) are used, the result of the subtraction operation will change every operation cycle. Please be careful.
2. The difference between the $\operatorname{SUB}(P)$ instruction and the $-(P)$ instruction and $D E C(P)$ instruction executed by the -1 subtraction program

SUB (P) instruction every time $X 1$ changes from OFF to $O N$, the program of D0 content -1 is similar to -(P) instruction and $\mathrm{DEC}(\mathrm{P})$ instruction described later, but the following contents are different.

			SUB/SUBP/DSUB/ DSUBP instructions	DEC/DECP/DDEC/ DDECP instructions
Flag bit (zero, borrow, carry)		Action	No action	

$$
\begin{aligned}
& \text { (S)-(-1)=(D) } \quad+32767 \rightarrow 0 \rightarrow+1 \rightarrow+2 \rightarrow \\
& \text { (S)-(+1)=(D) } \quad \leftarrow-2 \leftarrow-1 \leftarrow 0 \leftarrow-214 \text { THB } \\
& \text { 32-bit operation result } \\
& (\mathrm{S})-(-1)=(\mathrm{D}) \\
& 2147483647 \rightarrow 0 \rightarrow \\
& +1 \rightarrow+2 \rightarrow
\end{aligned}
$$

Error code

Error code
4085 H
4086 H

Content

The output results of (S1) and (S2) in the read application instruction exceed the device range
The output result of (D) in the write application instruction exceeds the device range

Example

Subtract 10 from the data in D0, and store the calculation result in D2, that is, (D0)-10 \rightarrow (D2).

DSUB/32-bit subtraction operation

DSUB(P)

Subtract the BIN32-bit data specified in (S1) and the BIN32-bit data specified in (S2), and store the result in the device specified in (D).

```
-[DSUB (S1) (S2) (D)]
```


Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	The subtraction data or the device storing the subtraction data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(S2)	The subtraction data or the device storing the subtraction data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(D)	Device for storing calculation results		Signed BIN32	ANY32_S

Device used

InstrucfarameterKn	Devices											Offset Pulse modificałidension		
	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	[D]	XXP
Parameter 1	-	-	\bullet	\bullet	-	\bullet	\bullet	\bullet	-	\bullet	-	\bullet	\bullet	\bullet
$\text { DSUB }{ }_{2}^{\text {Parameter }}$	\bullet													
$\begin{gathered} \text { Parameter } \\ 3 \end{gathered}$	\bullet			\bullet	\bullet									

Features

Subtract the BIN32-bit data specified in (S1) and the BIN32-bit data specified in (S2), and store the result of the operation in the device specified in (D).

Related device

Devices	Name
SM151	Carry
SM152	Borrow
SM153	Zero point

\#Note:

1. When the source operand and destination operand are specified as the same device:

The source operand and destination operand can also be specified as the same device number.
In this case, if continuous execution type instructions (SUB, DSUB) are used, the result of the subtraction operation will change every operation cycle. Please be careful.
2. The difference between the $\operatorname{SUB}(P)$ instruction and the $-(P)$ instruction and $D E C(P)$ instruction executed by the -1 subtraction program

SUB (P) instruction every time X 1 changes from OFF to ON , the program of D0 content -1 is similar to - (P) instruction and $\operatorname{DEC}(\mathrm{P})$ instruction described later, but the following contents are different.

			SUB/SUBP/DSUB/ DSUBP instructions	DEC/DECP/DDEC/ DDECP instructions
Flag bit (zero, borrow, carry)		Action	No action	

Error code

Error code
 4085H

Content

The output results of (S1) and (S2) in the read application instruction exceed the device range

The output result of (D) in the write application instruction exceeds the device range

Example

Subtract 100000 from the data in (D1,D0), and store the result of the operation in (D3,D2), that is, (D1,D0)-10000 \rightarrow (D3,D2).

MUL/16-bit multiplication

MUL(P)

Multiply the BIN16 bits specified in (S1) with the BIN16 bits specified in (S2), and store the result in the device specified in (D).
-[MUL (S1) (S2) (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Multiplication operation data or the device storing multiplication operation data	-32768 to 32767	Signed BIN 16 bit	ANY16_S
(S2)	Multiplication operation data or the device storing multiplication operation data	-32768 to 32767	Signed BIN 16 bit	ANY16_S
(D)	Device for storing calculation results		Signed BIN 32 bit	ANY32_S

Device used

InstrucPanameter	Devices											Offset Pulse modificadidension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	[D]	XXP
$\underset{1}{\text { Parameter }}$	-	-	-	\bullet	\bullet	-	\bullet	-			\bullet	\bullet	\bullet	\bullet
$\text { MUL } \underset{2}{\text { Parameter }}$	\bullet			\bullet	\bullet	\bullet	\bullet							
Parameter 3	\bullet	-	\bullet			\bullet	\bullet							

Features

Multiply the BIN 16-bit data specified in (S1) with the BIN 16-bit data specified in (S2), and store the result of the operation in the device specified in (D).

(D) is the multiplication result in the case of bit device

- K1: lower 4 bits (B0 to B3)
- K4: Lower 16 bits (B0 to B15)
- K8: Lower 32 bits (B0 to B31)

Error code

Error code
4085 H
4086 H

Content

The output results of (S1) and (S2) in the read application instruction exceed the device range
The output result of (D) in the write application instruction exceeds the device range

Example

Multiply the data in (D0) by (D2), and store the operation result in (D5, D4), that is, (D0) $\times(\mathrm{D} 2) \rightarrow(\mathrm{D} 5, \mathrm{D} 4)$.

DMUL/32-bit multiplication

DMUL(P)

Multiply the 32-bit BIN specified in (S1) and the 32-bit BIN specified in (S2), and store the result in the device specified in (D).

> -[DMUL (S1) (S2) (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Multiplication operation data or device storing multiplication operation data	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32_S
(S2)	Multiplication operation data or device storing multiplication operation data	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32_S
(D)	Device for storing calculation results		Signed BIN64 bit	ANY64_S

Device used

Multiply the BIN32-bit data specified in (S1) and the BIN32-bit data specified in (S2), and store the result of the operation in the device specified in (D).

(D) is the multiplication result in the case of bit device

- K1: lower 4 bits (B0 to B3)
- K4: Lower 16 bits (B0 to B15)
- K8: Lower 32 bits (B0 to B31)

Error code

Error code	Content
4085 H	The output results of (S1) and (S2) in the read application instruction exceed the device range
4086 H	The output result of (D) in the write application instruction exceeds the device range

Example

Multiply the data in (D1, D0) by (D3, D2), and store the result of the operation in ((D7, D6), (D5, D4)), ie (D1, D0) × (D3, D2) \rightarrow ((D7, D6), (D5, D4)).

DIV/16-bit division operation

DIV(P)

Divide the BIN 16-bit data specified in (S1) with the BIN 16-bit data specified in (S2), and store the result in the device specified in (D).
-[DIV (S1) (S2) (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Division operation data or device storing division operation data	-32768 to 32767	Signed BIN 16 bit	ANY16_S
(S2)	Division operation data or device storing division operation data	-32768 to 32767	Signed BIN 16 bit	ANY16_S
(D)	Device for storing calculation results		Signed BIN 32 bit	ANY32_S

Device used

InstrucFPamameter	Devices											Offset Pulse modificałidension		
KnX	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	[D]	XXP

Divide the BIN 16-bit data specified in (S1) with the BIN 16-bit data specified in (S2), and store the result of the operation in the device specified in (D).

In the case of a word device, the division result uses a 32-bit storage quotient and remainder, and in the case of a bit device, only a 16-bit storage quotient is used.

- Quotient is stored in the lower 16 bits.
- The remainder is stored in the upper 16 bits. (Can only be stored in the case of word devices.)

\#Note

1. About the opearation result

- The highest bit of the quotient and remainder represents the sign of positive (0) and negative (1).
- When one of (S1) or (S2) is negative, the quotient becomes negative. When (S 1) is negative, the remainder becomes negative.

2. The device specified by (D)

- With the digit specification function, when specifying a bit device, the remainder cannot be obtained.

Error code

Error code	Content
4080 H	The input of divisor (S2) is 0

Example

Divide the data in (D0) by (D2), and store the result of the calculation: the quotient is stored in (D4), and the remainder is stored in (D5), ie (D0)/ (D2) \rightarrow (D5(quotient)) (D4 (remainder)).

DDIV/32-bit division operation

DDIV(P)

Divide the BIN32-bit data specified in (S1) with the BIN32-bit data specified in (S2), and store the result in the device specified in (D).
-[DDIV (S1) (S2) (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S1)	Division operation data or device storing division operation data	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32_S
(S2)	Division operation data or device storing division operation data	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32_S
(D)	Device for storing calculation results		Signed BIN64 bit	ANY64_S

Device used

InstrucfiamameterKn	Devices											Offset Pulse modificatidension		
	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	[D]	XXP
$\underset{1}{\text { Parameter }}$	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet							
$\text { DDIV } \begin{gathered} \text { Parameter } \\ 2 \end{gathered}$	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet							
$\begin{gathered} \text { Parameter } \\ 3 \end{gathered}$	\bullet	-	\bullet			\bullet	\bullet							

Features

Divide the BIN32-bit data specified in (S1) with the BIN32-bit data specified in (S2), and store the result of the operation in the device specified in (D).

In the case of word devices, the division result uses BIN64 bits to store the quotient and remainder. In the case of bit devices, only the BIN 32-bit storage quotient is used.

\#Note:

1. About the operation result

- The highest bit of the quotient and remainder represents the sign of positive (0) and negative (1).
- When one of (S1) or (S2) is negative, the quotient becomes negative. When (S1) is negative, the remainder becomes negative.

2. The specified device of (D)

- With the digit specification function, when a bit device is specified, the remainder cannot be obtained.

Error code

Error code	Content
4080 H	The input of divisor (S2) is 0
4085 H	The output results of (S1) and (S2) in the read application instruction exceed the device range
4086 H	The output result of (D) in the write application instruction exceeds the device range

Example

Divide the data in (D1, D0) by (D3, D2), and store the result of the calculation: the quotient is stored in (D5, D4), and the remainder is stored in (D7, D6), that is (D1, D0)/ (D3, D2) \rightarrow (D5, D4) (quotient) (D7, D6) (remainder).

INC/16-bit data increment

INC(P)
Add one to the device (BIN 16-bit data) specified in (D).
-[INC (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	The word device number that stores the data added by one	-32768 to 32767	Signed BIN 16 bit	ANY16_S

Device used

Add one to the device (BIN 16-bit data) specified in (D).

- If the $\operatorname{INC}(P)$ instruction is executed when the content of the device specified in (D) is 32767, -32768 will be stored in the device specified in (D).
- Flags (zero, borrow, carry) do not perform actions.
\#Note: If the continuous execution (INC) instruction is used, the addition operation will be performed every operation cycle, so care should be taken.

Error code

Error code	Content
4085 H	The output results of (D) in the read application instruction exceed the device range
4086 H	The output result of (D) in the write application instruction exceeds the device range

Example

Add one to the device value specified in D0, that is, (D0) $+1 \rightarrow$ (D0).

DINC/32-bit data increment

DINC(P)
Add one to the device (BIN 32-bit data) specified in (D).
-[DINC (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	The word device number that stores the data added by one	-2147483648	to 2147493647	Signed BIN 32 bit

Device used

Instructi®arameter		Devices								Offset Pulse modificatiextension		
	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	[D]	XXP
DINC $\begin{gathered}\text { Parameter } \\ 1\end{gathered}$	\bullet											

Features

Add one to the device (BIN 32-bit data) specified in (D).

- When the DINC(P) instruction is executed when the content of the device specified in (D) is 2147483647, -2147483648 will be stored in the device specified in (D).
- Flags (zero, borrow, carry) do not perform actions.
\#Note: If the continuous execution (INC) instruction is used, the addition operation will be performed every operation cycle, so care should be taken.

Error code

Error code
4085 H
4086 H

Example

Add one to the device value specified in (D1, D0), that is, (D1, D0) $+1 \rightarrow(\mathrm{D} 1, \mathrm{D} 0)$.
DEC/16 bit data decrement
DEC(P)
Minus one for the device (BIN 16-bit data) specified in (D).
-[DEC (D)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	The word device number that stores the data minus by one	-32768 to 32767	Signed BIN 16 bit	ANY16_S

Device used

InstructiolParameter	Devices								Offset Pulse modificatioextension	
	KnY	KnM	KnS	T	C	D	R	SD	[D]	XXP
DEC Parameter	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	-	-	-

Features

Minus one for the device (BIN 16-bit data) specified in (D).

- If the $\operatorname{DEC}(P)$ instruction is executed when the content of the device specified in (D) is $-32768,32767$ will be stored in the device specified in (D).
- Flags (zero, borrow, carry) do not perform actions.
\#Note: If using continuous execution (DEC) instructions, subtraction will be performed every operation cycle, so care should be taken.

Error code

Error code	Content
4085 H	The output results of (D) in the read application instruction exceed the device range
4086 H	The output result of (D) in the write application instruction exceeds the device range

Example

Each time M0 is set, the value of the device specified in D0 will be $-1,(\mathrm{DO})-1 \rightarrow$ (D0).

DDEC/32-bit data decrement

DDEC(P)

Minus one for the device (BIN 32-bit data) specified in (D).
-[DDEC (D)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(D)	The word device	-2147483648 to	Signed BIN 32 bit	ANY32_S
	number that stores the data minus by one	2147483647		

Device used

Instructi®arameter		Devices								Offset Pulse modificatiextension		
	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	[D]	XXP
DDEC $\begin{gathered}\text { Parameter } \\ 1\end{gathered}$	\bullet	-	\bullet									

Features

Minus one for the device (BIN 32-bit data) specified in (D).

If the $\operatorname{DDEC}(P)$ instruction is executed when the content of the device specified in (D) is 0 , minus one will be stored in the device specified in (D).

- Flags (zero, borrow, carry) do not perform actions.
\#Note: If using continuous execution (DEC) instructions, subtraction will be performed every operation cycle.
Error code

Error code
4085H
4086H

Content

The output results of (D) in the read application instruction exceed the device range
The output result of (D) in the write application instruction exceeds the device range

Example

Minus one on the device value specified in (D1, D0), that is, (D1, D0)-1 \rightarrow (D0).

