07-4 Basic instruction

last modified by Joey
on 2022/06/09 15:07

Table of Contents

Data conversion instruction 3
BCD/BIN \rightarrow BCD 3
BIN/4-bit BCD \rightarrow BIN 4
DBIN/8-bit BCD \rightarrow BIN 6
FLT/BIN integer \rightarrow binary floating point number 8
DFLT/BIN integer \rightarrow binary floating point number 11
VAL/ String \rightarrow BIN 16-bit data conversion 12
DVAL/String \rightarrow BIN32-bit data conversion 13
ASCI/HEX code data \rightarrow ASClI conversion 15
HEX/ASCII \rightarrow HEX code data conversion 19
CCD/Check code 23
GBIN/Gray code \rightarrow BIN 16-bit data conversion 27
DGBIN/Gray code \rightarrow BIN32-bit data conversion 28
GRY/BIN 16-bit data \rightarrow Gray code conversion 30
DGRY/BIN 32-bit data \rightarrow Gray code conversion 31
DPRUN/Otal digit transmission (32-bit data) 32
Floating point instructions 34
DACOS/Single precision real number COS-1 operation 34
DASIN/Single precision real number SIN-1 operation 35
DATAN/Single precision real number TAN-1 operation 36
DCOS/Single precision real number COS operation 38
DCOSH/Single precision real number COSH operation 39
DSIN/Single precision real number SIN operation 40
DSINH/Single precision real number SINH operation 42
DTAN/Single precision real number TAN operation 43
DATANH/Single precision real number TANH operation 44
DDEG/Single precision real number radian \rightarrow angle conversion 46
DRAD/Single precision real number conversion angle \rightarrow radian conversion 47
DEADD/Single precision real number addition operation 49
DESUB/Single precision real number subtraction operation 50
DEMUL/Single precision real number multiplication operation 52
DEMOV/Single precision real data transmission 56
DEBCD/Binary floating point \rightarrow decimal floating point conversion 57
DEBIN/Decimal floating point \rightarrow binary floating point conversion 58
DENEG/Single precision real number sign inversion 60
DECMP/Single precision real number comparison 61
DESTR/Single precision real number \rightarrow string conversion 66
DEVAL/String \rightarrow single precision real number conversion 73
DEXP/Single precision real number exponential operation 79
INT/Single precision real number \rightarrow signed BIN 16-bit data 80
DINT/Single precision real number \rightarrow signed BIN 32-bit data 82
DLOG10/Single precision real number common logarithmic operation 83
DLOGE/Single precision real number natural logarithm operation 84

Data conversion instruction

BCD/BIN \rightarrow BCD

BCD(P)

Convert the BIN data of the device specified in (s) to BCD, and store it in the device specified in (d).
The calculation of the CPU module uses BIN (binary number) data for processing, which is used to display values in a 7 -segment display equipped with a BCD decoder.
$-[B C D$ (s) (d)]

Content, range and data type

Parameter (s)	Content			Range			Data type			Data type (label)		
	BIN data or start device storing BIN data			0 to 9999			Signed BIN16			ANY16		
(d)	Start device for storing BCD data			-			BCD 4 digits			ANY16		
Device used												
InstructParametvices						D	R	SD	K	Offset Pulse modificatidension		
KnX	KnY	KnM	KnS	T	C					H	[D]	XXP
$\begin{array}{ll} \text { BCD } & \text { Paramet } \\ & 1 \end{array}$	-	-	-	-		-	-	-	-	\bigcirc	\bigcirc	-
Parameter 2	-	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc	-

Features

The BIN 16-bit data (0 to 9999) of the device specified in (s) is converted to BCD 4-bit data and stored in the device specified in (d).

The data specified in (s) can be converted within the range of 0 to 9999 (BCD).
When the data specified in (s) or (d) is digit specification, the conditions are as shown in the table below.
(1): Must be set to 0 .
(s) BIN 9999

(d) BCD 9999

The data specified in (s) can be converted in the range of K 0 to K 9999 by BCD (decimal number).
When the data specified in (s) or (d) is digit specification, the conditions are as shown in the table below.

(d)	Digits	Data range
K1Y0	1-bit	0 to 9
K2Y0	2-bit	00 to 99
K3Y0	3-bit	000 to 999
K4YO	4-bit	0000 to 9999

\#Note: The four arithmetic operations (+-××), increment, decrement instructions and other operations in the CPU module are all performed by BIN (binary number). Therefore, when sending BCD (decimal) digital switch information to the CPU module, please use the $\mathrm{BIN}(\mathrm{P})$ command ($\mathrm{BCD} \rightarrow \mathrm{BIN}$ conversion transfer command). In addition, when outputting to the 7 -segment display of $B C D$ (decimal number), please use the $B C D(P)$ command ($B I N \rightarrow B C D$ conversion transmission).

Error code

Error code

4084H

4085H

4086H

Content

The data input in the application instruction (s) exceeds the specified range
The output result of the read application instruction (s) exceeds the device range
The output result of the write application instruction (d) exceeds the device range

Example

When M0 is set, the BIN value of D200 is converted into BCD and stored in K1Y0.

BIN/4-bit BCD \rightarrow BIN

BIN(P)

Convert the BCD data of the device specified in (s) to BIN and store it in the device specified in (d).
Similar to the digital switch, it converts the value set in BCD (decimal number) to BIN (binary number) that can be operated by the CPU module and is used for reading.
$-[B I N(s)(d)]$
Content, range and data type

Parameter	Content			Range			Data type			Data type (label)		
(s)	BCD data or start device storing BIN data			0 to 9999			BCD 4 digits			ANY16		
(d)	Start device for storing BIN data			-			Signed BIN16			ANY16		
Device used												
InstructParamevices												Pulse atidension
KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
$\begin{array}{ll} \text { BIN } & \begin{array}{l} \text { Paramet } \\ \\ \end{array} \end{array}$			\bullet	-		\bullet	-		\bullet	\bullet	\bullet	\bullet
Parameter 2	-	-	\bullet	-		\bullet		\bullet			\bullet	\bullet

Features

The BCD 4－bit data（0 to 9999）of the device specified in（s）is converted into BIN 16－bit data and stored in the device specified in（d）．
（1）：Must become 0 ．
（s）BCD 9999

（d）BIN 9999

（1）：必须变为 0 。

The data specified in（s）can be converted within the range of 0 to 9999 （BCD）．
When the data specified in (s) or (d) is digit specification，the conditions are as shown in the table below．

（d）	Digits	Data range
K1X0	1－bit	0 to 9
K2X0	2－bit	00 to 99
K3X0	3－bit	000 to 999
K4X0	4－bit	0000 to 9999

\＃Note：The calculations in the CPU module such as the four arithmetic operations（＋－× \div ），increment and decrement instructions are all performed by BIN（binary number）．Therefore，when sending BCD（decimal）digital switch information to the CPU module，please use the $\mathrm{BIN}(\mathrm{P})$ command（ $\mathrm{BCD} \rightarrow \mathrm{BIN}$ conversion transfer command）．

In addition, when outputting to the 7-segment display of BCD (decimal number), please use the $\mathrm{BCD}(\mathrm{P})$ command ($\mathrm{BIN} \rightarrow \mathrm{BCD}$ conversion transmission).

Error code

Error code

4084H

4085H

4086H

Content

The data input in the application instruction (s) exceeds the specified range

The output result of the read application instruction (s) exceeds the device range
The output result of the write application instruction (d) exceeds the device range

Example

When M0 is set, the BCD value of K1Y0 is converted into BIN and stored in D200.

DBIN/8-bit BCD \rightarrow BIN

DBIN(P)

Convert the BCD data of the device specified in (s) to BIN and store it in the device specified in (d).
Similar to the digital switch, it converts the value set in BCD (decimal number) to BIN (binary number) that can be operated by the CPU module and is used for reading.
-[DBIN (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	BCD data or start device storing BIN data	0 to 99999999	BCD 8 digits	ANY32
(d)	Start device for storing BIN data	-	Signed BIN32	ANY32

Device used

Features

The BCD 8-bit data (0 to 99999999) of the device specified in (s) is converted to BIN 32-bit data and stored in the device specified in (d).
(1): Must become 0 .

The data specified in (s) can be converted within the range of 0 to 99999999 (BCD).
When the data specified in (s) or (d) is digit specification, the conditions are as shown in the table below.

(d)	Bit	data range
K1X0	1-bit	0 to 9
K2X0	2-bit	00 to 99
K3X0	3-bit	000 to 999
K4X0	4-bit	0000 to 9999
K5X0	5-bit	00000 to 99999
K6X0	6-bit	00000 to 999999
K7X0	7-bit	0000000 to 9999999
K8X0	8-bit	00000000 to 99999999

\#Note: The calculations in the CPU module such as the four arithmetic operations (+-× \div), increment and decrement instructions are all performed by BIN (binary number). Therefore, when sending BCD (decimal) digital switch information to the CPU module, please use the $\mathrm{BIN}(\mathrm{P})$ command ($\mathrm{BCD} \rightarrow \mathrm{BIN}$ conversion transfer command). In addition, when outputting to the 7 -segment display of $B C D$ (decimal number), please use the $B C D(P)$ command ($\mathrm{BIN} \rightarrow \mathrm{BCD}$ conversion transmission).

Error code

Error code

4084H

4085H

4086H

Content

The data input in the application instruction (s) exceeds the specified range

The output result of the read application instruction (s) exceeds the device range

The output result of the write application instruction (d) exceeds the device range

Example

When M0 is set, the BCD value of K8Y0 is converted into BIN and stored in D200.

FLT/BIN integer \rightarrow binary floating point number

FLT(P)

An instruction to convert a BIN 16-bit integer value into a binary floating point number (real number).
-[FLT (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The data register number that saves the BIN integer value	-	Signed BIN 16 bit	ANY16
(d)	The data register number that saves the binary floating-point number (real number)	-	Single precision real number	ANYREAL_32

Instruckoram@levices														Offset Pulse modificmetension	
	KnX	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	[D]	XXP
FLT	Paramer 1	\bullet	-	\bullet	-	\bullet	\bullet	\bullet	\bullet			\bullet	\bullet	\bullet	\bullet
	Parameter 2				\bullet			\bullet	\bullet						

Features

The signed 16 -bit data specified in (s) is converted into a binary floating point data and stored in (d)+1, (d).

\#Note: In each binary floating point number (real number) operation instruction, the specified K and H values will be automatically converted into a binary floating point number (real number), so there is no need to use the FLT instruction for conversion.

The inverse conversion instruction of this instruction is INT (convert a binary floating point value into a BIN integer).

Error code

Error code

4085H

4086H

Content

When the device specified in the read application instruction (s) exceeds the corresponding device range
When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

Four arithmetic using binary floating point operations
(1) Calculation example

(2) Sequence control program

(D0) \rightarrow (D21, D20)
BIN binary floating point operations
$(\mathrm{X} 17$ to X 10$) \rightarrow(\mathrm{D} 22)$
BCD BIN
(D22) \rightarrow (D25, D24)
BIN binary floating point operations
$\mathrm{K} 345 \div \mathrm{K} 10 \rightarrow(\mathrm{D} 27, \mathrm{D} 26)$
Binary floating point operations
(D29,D28)×(D27,D26) $\rightarrow(\mathrm{D} 11, \mathrm{D} 10)$
Binary floating-point number multiplication
(D21,D20) $\div(\mathrm{D} 25, \mathrm{D} 24) \rightarrow(\mathrm{D} 29, \mathrm{D} 28)$
Binary floating-point number division operation \rightarrow Binary floating-point number operation
(D11,D10) \rightarrow (D13,D12)
Binary floating-point calculations \rightarrow
Decimal floating-point calculations monitoring
(D11,D10) \rightarrow (D13,D12)
Binary floating point operations 32-bit BIN integer

DFLT/BIN integer \rightarrow binary floating point number

DFLT(P)

An instruction to convert a BIN 32-bit integer value into a binary floating point number (real number).
-[DFLT (s) (d)]

Content, range and data type

Parameter	Content The data register number that saves the BIN32 integer value	Range	Data type Signed BIN 32 bit	Data type (label) ANY32
The data register number that saves the binary floating-point number (real number)	-	Single precision real number	ANYREAL_32	

Features

Convert the signed BIN 32-bit data specified in (s) to binary floating point data and store them in (d)+1, (d).

\#Note: In each binary floating-point number (real number) operation instruction, the specified K and H values are automatically converted into a binary floating-point number (real number), so there is no need to use the DFLT instruction for conversion. The inverse conversion instruction of this instruction is INT (convert a binary floating point value into a BIN integer).

Error code

Error code

4085H

4086H

Example

Content

When the device specified in the read application instruction (s) exceeds the corresponding device range
When the device specified in the write application instruction (d) exceeds the corresponding device range

When M2=ON, convert the BIN 32-bit integer -7963590 in [D1, D0] into a single-precision floating point number -7963590.0 and store it in the [D101, D100] device.

VAL/ String \rightarrow BIN 16-bit data conversion

VAL(P)

After converting the character string stored in the device number specified in (s) and later into BIN 16-bit data, store the number of digits in (d1) and store the BIN data in (d2).
[VAL (s) (d1) (d2)]
Content, range and data type

After converting the character string stored in the device number specified in (s) and later into BIN 16-bit data, store the number of digits in (d1) and store the BIN data in (d2). In the conversion from character string to BIN, the data from the device number specified in (s) to the device number storing 00 H is treated as a character string.

The total number of digits stored in (d1) stores the number of all characters (including signs and decimal points) representing the value. The number of decimal places stored in (d1)+1 stores the number of characters representing the decimal part after 2EH(.). For the BIN 16-bit data stored in (d2), the character string ignoring the decimal point is converted into a BIN value and stored.

Error code

Error code

4082H

Content

The character string specified by (s) could not be converted into a numeric value
For example:
The first character is not a negative sign or a space, space appears in the middle of the number, decimal point appears
Except for the first character, there are non-character and decimal Signs
For example, 3.4000 is 34000 after removing the decimal point, which is out of range.
4085H
(s) read address exceeds the device range

408AH
When the character number of character string the specified in (s) is other than 2 to 8.
408BH The maximum range of the device is read when (s) taking character string, but 00 H is not found as the end $4086 \mathrm{H} \quad$ When using offset, the offset address of (d) exceeds the device range

Example

0	$\stackrel{\text { SM102 }}{\longmapsto}$	[ASC		
10		R0	D0	D10

The result obtained above:
D0 corresponds to str length is 7 .
D1 corresponds to a decimal point length of 3.

D0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	7													
D1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-													

D10 corresponds to -12356 ignoring the decimal point.

Device	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F

DVAL/String \rightarrow BIN32-bit data conversion

DVAL(P)

After converting the character string stored in the device number specified in (s) into BIN 32-bit data, store the number of digits in (d1) and store the BIN data in (d2).
-[DVAL (s) (d1) (d2)]

Content, range and data type

Parameter	Content	Range	Data type	String
(s)The character string converted to BIN data or the start device that stores the character string	The	ANYSTRING_SINGLE		
(d1)	The start device that stores the number of digits of converted BIN data	Signed BIN 16 bit	ANY16_S_ARRAY	
(d2)	Start device for storing converted BIN data	Signed BIN 32 bit	ANY32_S	

Device used

InstructiBaramet®evices											Offset Pulse modificałidension	
	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	[D]	XXP
DVAL	Parameter 1			\bullet	\bullet	-	\bullet	\bullet			\bullet	\bullet
	Paramete 2	\bullet			\bullet	\bullet						
	$\begin{aligned} & \text { Paramet } \theta \\ & 3 \end{aligned}$	-	\bullet	-	\bullet	-	\bullet	\bullet	\bullet	-	-	-

Features

After converting the character string stored in the device number specified in (s) into BIN 32-bit data, store the number of digits in (d1) and store the BIN data in (d2). In the conversion from character string to BIN, the data from the device number specified in (s) to the device number storing 00 H is treated as a character string.

The total number of digits stored in (d1) stores the number of all characters (including signs and decimal points) representing the value. The number of decimal places stored in (d1)+1 stores the number of characters representing the decimal part after 2EH(.). For the BIN 32-bit data stored in (d2), the character string ignoring the decimal point is converted into a BIN value and stored.

Error code

Error code

4082H

Content

The character string specified by (s) could not be converted into a numeric value.
For example:The first character is not a negative sign or a space, space appears in the middle of the number, decimal pc
Except for the first character, there are non-character and decimal Signs
For example, 3.000000000 is 3000000000 after removing the decimal point, which is out of range.

4085H
(s) read address exceeds the device range

408AH When the character number of character string the specified in (s) is other than 2 to 13.
408BH The maximum range of the device is read when (d1) and (d2) taking character string, but 00H is not found as the end
$4086 \mathrm{H} \quad$ When using offset, the offset address of (d) exceeds the device range

Example

The result obtained above
D0 corresponds to str length is 7 .
D1 corresponds to a decimal point length of 3 .

| DO | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
D1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3

D10 corresponds to -12356 ignoring the decimal point

| Device | +0 | +1 | +2 | +3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D0 | 196615 | 0 | 0 | 0 |
| D8 | 0 | -12356 | 0 | 0 |

ASCI/HEX code data \rightarrow ASCII conversion

ASCI(P)

After the n characters (bits) in the HEX code data specified in (S) are converted into ASCII codes, they are stored after the device number specified in (D).

```
-[ASCI (S) (D) (N)]
```

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The start number of the device storing the HEX code to be converted	-	BIN16 bit	ANY16
(D)	The start number of the device storing the converted ASCII code	-	String	ANYSTRING_SINGLE
(N)	The number of characters (digits) of the HEX code to be converted	1 to256	BIN16 bit	ANY16_U

Device used

Instruc Panamemervices													Offset Pulse modificatsitemsion	
	KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	E	[D]	XXP
ASCI	$\begin{aligned} & \text { Paramer } \\ & 1 \end{aligned}$	-	\bullet	\bullet	\bullet	\bullet	-	\bullet	-	\bullet	\bullet		\bullet	\bullet
	Parameter 2	-	\bullet	\bullet	-	-	-	\bullet	-				\bullet	-

```
Parameter
3
```


Features

The number of characters (bits) specified by (N) in the HEX code data specified in (S) is converted into ASCII code and stored in the device number specified in (D) or later.

ASCI(P) instruction uses 16 -bit mode and 8 -bit mode when converting. For the operation of each mode, please refer to the following content.
(1) 16-bit conversion mode (when SM8161=OFF)

Convert the digits of the HEX code after the device specified in (S) into ASCII, and transfer to the upper and lower 8 bits (bytes) of the device specified in (D). When using in 16-bit conversion mode, SM161 should always be turned OFF.

In the case of the following program, perform the conversion as shown below.

Devices after (s): D100=OABCH, D101=1234H, D102 $=5678 \mathrm{H}$

Specify the number of bits (characters) and the conversion result

(N)	K1	K2	K3	K4	K5	K6	K7	K8	K9
(D)									
Under D200	C	B	C	0	4	3	2	1	8
D200 on		C	B	C	0	4	3	2	1
Under D201			C	B	C	0	4	3	2
D201 on				C	B	C	0	4	3
Under D202					C	B	C	0	4
D202 on		Unch				C	B	C	0
Under D203							C	B	C
D203 on								C	B
Under D204									C

Bit structure in the case of $=K 4$

ASCII code

$$
\begin{aligned}
& \text { "0"=30H "1"=32H "5"=35H } \\
& \text { "A"=41H "2"=32H "6"=36H } \\
& \text { "B"=42H "3"=33H "7"=37H }
\end{aligned}
$$

"C"=43H "4"=34H "8"=38H

(2) 8-bit conversion mode (when SM161=ON)

Convert the digits of the HEX code after the device specified in (S) into ASCII, and transfer to the lower 8 bits (bytes) of the device specified in (D). When using in 8-bit conversion mode, SM161 should always be set to ON for use.

In the case of the following program, perform the conversion as shown below.

Devices after (s1): D100 $=\mathrm{OABCH}, \mathrm{D} 101=1234 \mathrm{H}, \mathrm{D} 102=5678 \mathrm{H}$

If SM161 is set to ON, it will become 8-bit mode,
Perform conversion processing as shown below.

(N)	K1	K2	K3	K4	K5	K6	K7	K8	K9
(D)									
D200	C	B	C	0	4	3	2	1	8

D201	C	B	C	0	4	3	2	1
D202		C	B	C	0	4	3	2
D203			C	B	C	0	4	3
D204				C	B	C	0	4
D205	Unchanged				C	B	C	0
D206						C	B	C
D207							C	B
D208								C

Bit structure in the case of $(\mathrm{N})=\mathrm{K} 2$
ASCII

$$
\begin{aligned}
& \text { "0"=30H "1"=31H " } 5 \text { " }=35 \mathrm{H} \\
& \text { "A"=41H "2"=32H " } 6 "=36 \mathrm{H} \\
& \text { "B"=42H "3"=33H "7"=37H } \\
& \text { "C"=43H "4"=34H "8"=38H }
\end{aligned}
$$

Error code

Error code
4085H

4086H

4084H

Content

When the specified device range is read to exceed the corresponding device range
When the specified device range is written to exceed the corresponding device range
When the value specified in (N) exceeds the range of 1 to 256

Example

- 16-bit conversion mode (when SM161=OFF)

Convert the digits of the HEX code after the device specified in d100 into ASCII, and transfer to the upper and lower 8 bits (bytes) of the device specified in d200. When using in 16-bit conversion mode, SM161 should always be turned OFF.

HEX/ASCII \rightarrow HEX code data conversion
 HEX(P)

After the device number specified in (s), the ASCII data stored in the number of characters specified in is converted to HEX code, and then stored in the device number specified in (d) or later.
-[HEX (S) (D) (N)]

Content, range and data type

Features

- After the device number specified in (S), the ASCII data stored in the number of characters specified in (N) is converted to HEX code, and then stored in the device number specified in (D) or later. The HEX(P) instruction uses 16 -bit conversion mode and 8 -bit conversion mode when converting. For the operation of each mode, please refer to the following content.

(1) 16-bit conversion mode (when SM161=OFF)

After converting the ASCII data stored in the upper and lower 8 digits (bytes) of the device specified in (S) into HEX code, it transmits every 4 digits to the device specified in (D). The number of characters to be converted is specified in (N).

SM161 is shared with ASC, ASCI, BCC, CCD and CRC instructions. When using in 16-bit conversion mode, please always set SM161 to OFF.

SM161 is cleared when RUN \rightarrow STOP.
In addition, it is necessary to store the ASCII data in the 16-bit conversion mode in the upper 8 bits of the device specified in (S).

In the following program, the conversion will be performed in the following manner.

Transform the source data

（S）

Under D200
D200 on
Under D201
D201 on
Under D202
D202 on
Under D203
D203 on
Under D204

ASCII data

30H
41H
42 H
43H
31H
32H
33 H
34H
35H

HEX conversion
0
A
B
C
1
2
3

4
5

Bit structure in the case of $(\mathrm{N})=\mathrm{K} 4$

（ n ）	（d）		
	D102	D101	D100
1			$\ldots \mathrm{OH}$
2			．．OAH
3			． 0 ABH
4			OABCH
5		$\ldots \mathrm{OH}$	ABClH
6		．．0AH	BC 12 H
7		． 0 ABH	C123H
8		OABCH	1234H
9	$\ldots \mathrm{OH}$	ABClH	2345H

（1）：不变化

The number of characters specified and the conversion result becomes 0 ．

（N）		1	2	3	4	5	6	7	8
（D）	D102	Unchanged						9	
	D101			$\ldots O H$	．．OAH	．OABH	OABCH	ABC1H	

D100 ...OH ..OAH .OABH OABCH ABC1H BC12H C123H 1234H 2345H

(2) 8-bit conversion mode (when SM161=ON)

After converting the ASCII data stored in the lower 8 digits of the device specified in (S) into HEX code, it will be transmitted to the device specified in (D) every 4 digits.

The number of characters to be converted is specified in (N).
SM161 is shared with ASC, ASCI, BCC, CCD and CRC instructions. When using in 8-bit conversion mode, please always turn on SM161.

SM161 is cleared when RUN \rightarrow STOP.
In the following program, the conversion will be performed in the following manner.

Transform the source data

(S)	ASCII data	HEX conversion
D200	30 H	0
D201	41 H	A
D202	42 H	B
D203	43 H	C
D204	31 H	1
D205	32 H	2
D206	33 H	3
D207	34 H	4
D208	35 H	5

（1）：不变化

The number of characters specified and the conversion result becomes 0 ．

（N）		1	2	3	4	5	6	7	8	9
（D）	D102	Unchanged								．．．OH
	D101					．．．OH	．．OAH	．OABH	OABCH	ABC 1 H
	D100	．．．OH	．．OAH	．OABH	OABCH	ABC1H	BC 12 H	C123H	1234H	2345 H

Error code

Error code

4084H

4085H

4086H

Content

When the value specified in (N) exceeds the range．
When ASCII codes other than 30 H to 39 H and 41 H to 46 H are set in（s）．
When the specified device range is read to exceed the corresponding device range
When the specified device range is written to exceed the corresponding device range

Example

After converting the ASCII data stored in the upper and lower 8 digits（bytes）of the device specified in（S）into HEX code，it transmits every 4 digits to the device specified in（D）．The number of characters to be converted is specified in（ N ）．

SM161 is shared with ASC, ASCI, BCC, CCD and CRC instructions. When using in 16-bit conversion mode, please always set SM161 to OFF.

CCD/Check code

CCD(P)

Calculate the horizontal parity value and the sum check value of the error checking method used in communication and the like. In addition to these error checking methods, there are CRC (Cyclic

Redundancy Check). To calculate the CRC value, use the CRC(P) command.

```
-[CCD (S) (D) (N)]
```


Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S)	The start number of object device	-	BIN16 bit	ANY16
(D)	The start number of the storage destination device of the calculated data	-	BIN16 bit	ANY16_ARRAY (number of elements: 2)
(N)	Number of data	1 to 256	BIN16 bit	ANY16_U

Device used

InstructRarametices Offset Pulse

 modificaikidension

Features

Calculate the addition data and horizontal parity data of the data stored in (S) to $(\mathrm{S})+(\mathrm{N})-1$, and store the addition data in (D), horizontal parity

The data is stored in $(\mathrm{D})+1$. The modes used by this instruction in calculation are 16 -bit mode and 8 -bit mode. For the operation of each mode, please refer to the following content.
(1) 16-bit conversion mode (when SM161=OFF)

Regarding the data at point (N) starting with (S), the addition data and horizontal parity data of the high and low 8bit data are stored in the Devicess (D) and (D)+1.

SM161 is shared with ASC, ASCI, BCC, CCD and CRC instructions. When using in 16 bits, always set to OFF for use.

SM161 is cleared when RUN \rightarrow STOP.
In the case of the following program, perform the conversion as shown below.
16-bit conversion mode

(1)

If the number of 1 is odd, the horizontal parity is 1
If the number of 1 is even, the horizontal parity is 0

Horizontal parity

D0

0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	1

D1

0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1		水平奇偶校验

（2）8－bit conversion mode（when SM161＝ON）

Regarding（ S ）as the starting point（ N ）data（lower 8 bits only），its addition data and horizontal parity data are stored in the devices（D）and（D）+1 ．

SM161 is shared with ASC，ASCI，BCC，CCD and CRC instructions．If it is used in 8 bits，it should always be set to ON for use．

SM161 is cleared when RUN \rightarrow STOP．
In the case of the following program，perform the conversion as shown below．

If the number of 1 is odd，the horizontal parity is 1
If the number of 1 is even，the horizontal parity is 0

Horizontal parity

D0

0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	1
BCD															

D1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$𠃌_{\text {水平奇偶校验 }}$

Error code

Error code

4084H
4085H

4086H

Content

When the value specified in（ N ）exceed the range of 1 to 256 ．
When the specified device range is read to exceed the corresponding device range
When the specified device range is written to exceed the corresponding device range

Example

Regarding D10 as the initial 10-point data, the addition data and horizontal parity data of the high and low 8-bit data are stored in the Devicess of D0 and D0+1.

SM161 is shared with ASC, ASCI, BCC, CCD and CRC instructions. When using in 16 bits, always set to OFF for use.

GBIN/Gray code \rightarrow BIN 16-bit data conversion

$\operatorname{GBIN}(\mathrm{P})$

Convert the BIN 16-bit Gray code data stored in the device specified in (s) into BIN 16-bit data, and store it in the device specified in (d).
-[GBIN (s) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Gray code data or the start device that stores Gray code	0 to 32767	BIN16 bit	ANY16_S
(d)	The start device that stores the converted BIN data	-	BIN16 bit	ANY16_S

Device used

Instructßaramervices Offset Pulse

	KnX	KnY	KnM	KnS	T	C	D	R	SD	K	H	[D]	XXP
GBIN	Paramet 1	-	-	-	-	-	-	-	-	\bullet	-	-	\bullet
	Parameter 2	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet			\bullet	\bullet

Features

Convert the BIN 16-bit Gray code data stored in the device specified in (s) into BIN 16-bit data, and store it in the device specified in (d).
(s)

1234

(d) BIN

1234

GRY \rightarrow BIN Mathematical Algorithm: Starting from the second bit from the left, XOR each bit with the decoded value of the left bit as the decoded value of the bit (the leftmost bit remains unchanged).

Error code

Error code
4084H
4085H
4086H

Content

When the value specified in (s) exceeds the range
When the specified device range is read to exceed the range of the corresponding device

When the specified device range is written to exceed the range of the corresponding device

Example

It could be used when the encoder of Gray code method is used to detect the absolute position.
For S, the numerical are valid in the range of 0 to 32767.

DGBIN/Gray code \rightarrow BIN32-bit data conversion

DGBIN(P)

Convert the BIN32-bit Gray code data stored in the device specified in (s) to BIN 32-bit data and store it in the device specified in (d).

Content, range and data type

Features

Convert the BIN32-bit Gray code data stored in the device specified in (s) into BIN 32-bit data, and store it in the device specified in (d).
(s) +1
(s)

η
(d) +1
(d)

(s)+1: high 16 bits
(s): low 16 bits

GRY \rightarrow BIN Mathematical Algorithm: Starting from the second bit from the left, XOR each bit with the decoded value of the left bit as the decoded value of the bit (the leftmost bit remains unchanged).

Error code

Error code
4084H
4085H

4086H

Content

When the value specified in (s) exceeds the range
When the specified device range is read to exceed the corresponding device range
When the specified device range is written to exceed the corresponding device range

Example

$\left.0 \left\lvert\, \begin{array}{llll}\mathrm{X} 0 & \text { [DGBIN } & \text { K3054.. D10 }\end{array}\right.\right\}$
(s) +1
(s)
(s) 305419896

(d) +1

GRY/BIN 16-bit data \rightarrow Gray code conversion

GRY(P)

After converting the BIN 16-bit data of the device specified in (s) to BIN 16-bit Gray code data, it is stored in the device specified in (d).
-[GRY (s) (d)]

Content, range and data type

Features

Convert the BIN 16-bit data specified in (s) into BIN 16-bit Gray code, and store it in the device specified in (d).
(s) BIN

(d)

BIN \rightarrow GRY Mathematical Algorithm: Starting from the rightmost bit, XOR each bit with the left bit as the value corresponding to the GRY bit, and the leftmost bit remains unchanged (equivalent to 0 on the left) .

Error code

Error code

4084H
4085H

4086H

Example

Content

When the value specified in (s) exceeds the range
When the specified device range is read to exceed the corresponding device range

When the specified device range is written to exceed the corresponding device range

K1234 K3Y10 \}

As shown in the above Circuit program:

For S, the range of 0 to 32767 is valid.

DGRY/BIN 32-bit data \rightarrow Gray code conversion

DGRY(P)

After converting the BIN 16-bit data of the device specified in (s) to BIN 16-bit Gray code data, it is stored in the device specified in (d).

```
-[GRY (s) (d)]
```

Content, range and data type

Parameter	Content				Range			Data type				Data type (label)		
(s)	BIN data or the start device that stores BIN data				0 to 2147483647			BIN32 bit				ANY32_S		
(d)	The start device that stores the converted Gray code				-			BIN32 bit				ANY32_S		
Device used														
InstrucReram@evices														Pulse certension
KnX	KnY	KnM	KnS	T	C	D	R	SD	LC	HSC	K	H	[D]	XXP
DGRY Parame 1	\bigcirc	-			-	\bigcirc			-			\bigcirc	\bigcirc	-
Parameter 2	-	-	-	\bigcirc	\bigcirc	\bigcirc		-	-	-			\bigcirc	\bigcirc

Features

Convert the BIN32-bit data specified in (s) into BIN32-bit Gray code and store it in the device specified in (d)
(s) +1
(s)
(s) BIN
305419896

	31												16	b15												b0
0	00	0	1	0	0		0	0	1	10	1	0	0	0	1	0	10	1	1	0	0	1	1	1		

(d) +1

(s)+1: high 16 bits
(s): low 16 bits

BIN \rightarrow GRY Mathematical Algorithm: Starting from the rightmost bit, XOR each bit with the left bit as the value corresponding to the GRY bit, and the leftmost bit remains unchanged (equivalent to 0 on the left) .

Error code

Error code

4084H
4085H
4086H

Content

When the value specified in (s) exceeds the range
When the specified device range is read to exceed the corresponding device range
When the specified device range is written to exceed the corresponding device range

Example

$$
0 \text { [DGRY K3054. K3Y0] }
$$

As shown in the above Circuit program:
(s) +1

(d) +1

DPRUN/Otal digit transmission (32-bit data)

DPRUN(P)

After processing the device numbers of (s) and (d) with specified digits as octal numbers, transfer the data. -[PRUN (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Digit specification*1	-	BIN32 bit	ANY32
(d)	Transfer destination	-	BIN32 bit	ANY32
	device number*1			

Device used

Instruction	Parameter	Devices		Offset modification	Pulse extension	
		KnX	KnY	KnM	$\left[\begin{array}{ll}\text { [D] } & \text { XXP }\end{array}\right.$	
DPRUN	Parameter 1	\bullet		\bullet	\bullet	\bullet
	Parameter 2		\bullet	\bullet	\bullet	\bullet

Features

- Octal digit device to decimal digit device

- Decimal digit device \rightarrow octal digit device

Error code

Error code

4085H

4086H

Content

When the specified device range is read to exceed the corresponding device range
When the specified device range is written to exceed the corresponding device range

Example

As shown in the above Circuit program:
X0 to X27 take the value of octal digits and pass them to the Devices corresponding to M.

Floating point instructions

DACOS/Single precision real number COS-1 operation

DACOS(P)

After calculating the COS^{-1} (arc cosine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).

```
-[DACOS
(s) (d)]
```

Content, range and data type

Parameter	Content		Range					Data	bel)
(s)	The angl $\cos ^{-1}$ calculatio device n stores the	or ne) start hat data	0, 2^{-126}	(s) $\mid<1$		recisi		ANYR	
(d)	The start that stor result	number ation	0 to π			recisi		ANYRE	
Device used									
InstructioRarameteD	vices								Pulse tiextension
T	C	D	R	SD	LC	HSC	E	[D]	XXP
$\text { DACOS } \begin{aligned} & \text { Parameter } \\ & 1 \end{aligned}$	\bullet	\bullet	\bullet	\bullet	\bullet			-	-
```Parameter 2```	$\bullet$	-	$\bullet$	$\bullet$	$\bullet$	$\bullet$		$\bullet$	$\bullet$

## Features

After calculating the $\cos ^{-1}$ (arc cosine) value of the angle specified in ( s ), the calculation result is stored in the device number specified in (d).


The COS value specified in (s) can be set within the range of -1.0 to 1.0 .
The angle (calculation result) stored in (d) stores the value from 0 to $\pi$ in radians.
Related device are as follows:

Devices	Name
SM153	Zero
SM152	Borrow


Content	
Condition	Operation
The operation result is zero	The zero flag (SM153) turns
	ON.

## Error code

## Error code

4085H
4086H
4084H

## Content

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s) is an irregular number, a non-number, $\pm \infty$ and exceeds -1.0 to 1.0

## Example



Calculate the arc cosine value of 0.4 and the result is 1.159279 .

$$
\text { D0 } \quad 1.159279
$$

## DASIN/Single precision real number SIN $^{-1}$ operation

## DASIN(P)

After calculating the SIN -1 (arc sine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
-[DASIN (s) (d)]
Content, range and data type



## Features

- After calculating the SIN-1 (arc sine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).


The $\mathrm{SIN}^{-1}$ value specified in ( s ) can be set within the range of -1.0 to 1.0 .
The angle (calculation result) stored in (d) is stored in the unit of radians ( $-\pi / 2$ ) to ( $\pi / 2$ ).

- The related devices are as follows.

Devices	Name	Content	
		Condition	Operation
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result<2-126	The value of (d) becomes the minimum value of 32 -bit real numbers $\left(2^{-126}\right)$, and the borrow flag (SM152) turns ON

## Error code

Error code
4085H
4086H
4084H

## Content

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s) is an irregular number, a non-number, $\pm \infty$ and exceeds -1.0 to 1.0

## Example



Calculate the arc sine of 0.4 and the result is 0.4115168 .
DO

DATAN/Single precision real number TAN $^{-1}$ operation

## DATAN(P)

After calculating the TAN-1 (arctangent) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
-[DATAN (s) (d)]

## Content, range and data type

Parameter	Content	Range	Data type	
(s)	The angle data for   TAN (arctangent)   calculation or the start   device number that   stores the angle data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real   number	Data type (label)   ANYREAL_32
(d)	The start device number   that stores operation   result	Single precision real   number	ANYREAL_32 $\pi / 2$	

## Device use

InstructioRarameteDevices


## Features

Calculate the TAN-1 ((arctangent) value of the angle specified in (s), and store the calculation result in the device number specified in (d).


The angle (calculation result) stored in (d) is stored in the unit of radians $(-\pi / 2)$ to $(\pi / 2)$.

- The related devices are as follows.

Devices	Name	Content   Condition		
SM153	Zero	The operation result is zero		
SM152	Operation   The zero flag (SM153) turns			
The absolute value of				
operation result<2			$\quad$	ON.
:---				

## Error code

Error code
4085H

## Content

The write address in (s) exceeds the device range

4086H
4084H

## Example

Calculate the arctangent value of 4.6 and the result is 1.356736
DO 1.356736

## DCOS/Single precision real number COS operation

## DCOS (P)

After calculating the $\operatorname{COS}$ (cosine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).

```
-[DCOS (s) (d)]
```

Content, range and data type


After calculating the COS (cosine) value of the angle specified in (s), store the calculation result in the device number specified in (d).


For the angle specified in (s), set it in radians (angle $\times \pi \div 180$ ).

- The related devices are as follows.

Devices	Name	Content	
		Condition	Operation
SM153	zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result<2-126	The value of (d) becomes the minimum value of 32 -bit real numbers $\left(2^{-126}\right)$, and the borrow flag (SM152) turns ON

## Error code

## Error code

4085H
4086H
4084H

## Content

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

## Example



Calculate the cosine value of 1.3 and the result is $2.674989 \mathrm{E}-1$

```
DO 2.674989E-1
```


## DCOSH/Single precision real number COSH operation

## DCOSH(P)

After calculating the DCOSH (hyperbolic cosine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).

```
-[DCOSH (s) (d)]
```

Content, range and data type


## Features

- After calculating the DCOSH (hyperbolic cosine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).


This instruction is to take the COSH value of a binary floating point number. The calculation formula is cosh value $=(\mathrm{e} \mathrm{s}+\mathrm{e}-\mathrm{s}) / 2$.

- The related devices are as follows.

Devices	Name
SM151	carry

## Content Condition

The absolute value of the operation result>2 ${ }^{128}$

## Operation

The value of ( d ) becomes the maximum value of 32-bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

## Error code

## Error code

4085H
4086H
4084H

## Content

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by $(s)$ is an irregular number, a non-number and $\pm \infty$

## Example



Calculate the hyperbolic cosine value of 2.5, and the result is 6.132289

```
DO
6. 132289
```


## DSIN/Single precision real number SIN operation

## DSIN(P)

After calculating the SIN (sine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).

```
-[DSIN (s) (d)]
```

Content, range and data type

(s)	The angle data for $\operatorname{SIN}$   (sine) calculation or the   device start number that				
stores the angle data		$\quad 0,2^{-126} \leq	(\mathrm{s})	<2^{128} \quad$	Single precision real
:---					
number	ANYREAL_32				

Device used

## InstructioRarameteDevices

Offset Pulse modificatiextension



## Features

After calculating the SIN (sine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).


For the angle specified in (s), set it in radians (angle $\times \pi \div 180$ ).

- The related devices are as follows.

Devices	Name	Content   Condition   The operation result is zero	Operation   The zero flag (SM153) turns   ON.
SM153	Zero	The absolute value of   operation result <2-126	The value of (d) becomes the   minimum value of a 32-bit
SM152	Borrow	real number (2   borrow flag (SM152) turns on.	

## Error code

## Error code

4085H
4086H
4084H

## Content

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

## Example



Calculate the sine of 1.4 and the result is 0.9854497

```
DO
\(9.854497 \mathrm{E}-1\)
```


## DSINH/Single precision real number SINH operation

## DSINH(P)

After calculating the SINH (hyperbolic sine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
-[DSINH (s) (d)]

## Content, range and data type

Parameter   (s)		Content		Range		Data type			Data type (label)	
		The angle data for SINH (hyperbolic sine) calculation or the device start number that stores the angle data		$0,2^{-126} \leq\|(s)\|<2^{128}$		Single precision real number			ANYREAL_32	
(d)		The start device number that stores operation result				Single precision real number			ANYREAL_32	
Device used										
InstructioRarameteDevices				R	SD	LC		E		Pulse iextension
	T	C	D				HSC		[D]	XXP
DSINH	Parameter   1	$\bullet$	-	-	$\bullet$	$\bullet$	-	-	$\bullet$	$\bullet$
	Parameter $2$	$\bullet$	-	-	$\bullet$	-	-		-	-

## Features

After calculating the SINH (hyperbolic sine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).


[^0]| Devices | Name | Content <br> Condition <br> The operation result is zero |
| :--- | :--- | :--- |
| SM153 | Zero | Operation |
| SM152 | Borrow zero flag (SM153) turns |  |
| ON. |  |  |

## Error code

## Error code

4085H
4086H
4084H

## Content

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

## Example



Calculate the hyperbolic sine value of 3.2 and the result is 12.24588

$$
\text { D0 } \quad 1.224588 \mathrm{E}+1
$$

## DTAN/Single precision real number TAN operation

## DTAN(P)

After calculating the TAN (tangent) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
-[DTAN (s) (d)]
Content, range and data type



## Features

After calculating the TAN (tangent) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).


For the angle specified in (s), set it in radians (angle $\times \pi \div 180$ ).
The related devices are shown below.

Devices	Name	Content	
		Condition	Operation
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result <2-126	The value of (d) becomes the minimum value of a 32-bit real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.
SM151	Carry	The absolute value of operation result> $2^{128}$	The value of (d) becomes the maximum value of 32 -bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

## Error code

Error code
4085H
4086H
4084H

## Content

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

## Example



Calculate the tangent of 1.4 and the result is 5.797883

DATANH/Single precision real number TANH operation
DTANH(P)

After calculating the DTANH (hyperbolic tangent) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
-[DTANH (s) (d)]

## Content, range and data type

Parameter	Content	Range	Data type	Data type (label)   (s)      The angle data for   DTANH (hyperbolic   tangent) calculation or   the device start number   that stores the angle   data
	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real   number	ANYREAL_32	

## Device used

InstructioRarameteDevices


## Features

After calculating the DTANH (hyperbolic tangent) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).


The instruction is to take the TANH value of a binary floating point number. The calculation formula is tanh value $=\left(e^{s}-e^{-s}\right) /\left(e^{s}+e^{-s}\right)$.

The related devices are shown below.

Device	Name	Content	
		Condition	Operation
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result <2 $2^{-126}$	The value of (d) becomes the minimum value of a 32 -bit real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.

## Error code

4085H
4086H
4084H

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

## Example

$$
0 \left\lvert\, \mathrm{C}^{\text {M0 }} \longmapsto\left[\begin{array}{llll}
\text { DTANH } & \text { E2.5 } & \text { D0 }
\end{array}\right]\right.
$$

Calculate the hyperbolic tangent of 2.5 , and the result is 0.9866143

```
DO
9. \(866143 \mathrm{E}-1\)
```


## DDEG/Single precision real number radian $\rightarrow$ angle conversion

## DDEG(P)

Convert the size unit of the angle from the radian unit specified in (s) to the degree unit (DEG. unit), and store it in the device number specified in (d).
-[DDEG (s) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The radian angle that   converts the degree   unit or the device start   number that stores the   radian angle	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real   number	ANYREAL_32
(d)	The device start number $-\pi / 2$ to $\pi / 2$   that stores the value   converted in degrees	Single precision real	ANYREAL_32	

## Device used

InstructioRarameteDevices

	T	C	D	R	SD	LC	HSC	E	[D]	XXP
DDEG	Parameter $1$	-	-	$\bullet$	-	$\bullet$	-	-	$\bullet$	$\bullet$
	```Parameter 2```	$\bullet$	-	$\bullet$	-	$\bullet$	$\bullet$		-	$\bullet$

Features

The angle size unit is converted from the radian unit specified in (s) to the degree unit (DEG. unit), and then stored in the device number specified in (d).

The conversion from degree unit to radian unit is performed as follows.
Radian unit = degree unit * $180 / \pi$

- The related devices are as follows.

Devices	Name
SM153	Zero
SM151	Carry

Content

Condition	Operation
The operation result of is zero	The zero flag (SM153) turns
(when the mantissa part is	ON.
zero)	The value of (d) becomes the maximum value of 32-bit real The absolute value of the numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code

4085H
4086H
4084H

Content

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

The result is 194.8057
DO

1. $948057 \mathrm{E}+2$

DRAD/Single precision real number conversion angle \rightarrow radian conversion

DRAD(P)

The angle size unit is converted from the degree unit (DEG. unit) specified in (s) to the radian unit and stored in the device number specified in (d).
-[DRAD (s) (d)]
Content, range and data type

The angle size unit is converted from the degree unit (DEG. unit) specified in (s) to the radian unit and stored in the device number specified in (d).

Degree unit \rightarrow radian unit
The conversion is performed as follows.
Radian unit $=$ degree unit*${ }^{\star} \pi / 180$

- The related devices are as follows.

Devices	Name	Content Condition
SM153	Zero	The operation result is zero
SM152	Operation The zero flag (SM153) turns	
On.		

Error code

Error code

4085H
4086H
4084H

Content

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

The result is 1.047197

DEADD/Single precision real number addition operation

DEADD(P)

Add the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the result in the device specified in (d).
-[DEADD (s1) (s2) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The added data or the device start number that stores the added data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(s2)	Addition data or the device start number that stores the addition data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	the device start number that stores the operation	-	Single precision real number	ANYREAL_32

Device used

InstructiBarametBevices

Offset Pulse modificałictension

Features

Add the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the result of the addition in the device specified in (d).

When constants (K, H) to (s1), (s2) are specified, the value is automatically converted to a binary floating point data.

- The related devices are as follows.

Devices	Name
SM153	Zero
SM152	Borrow
SM151	Carry

Content Condition
The operation result is zero The zero flag (SM153) turns ON.

The value of (d) becomes the minimum value of a 32 -bit real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.
The value of (d) becomes the maximum value of 32 -bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code

4085H
4086H
4084H

Content

The write address in (s1) and (s2) exceed the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s 1) and (s 2) is an irregular number, a non-number and $\pm \infty$

Example

SM102				
-	-	[DEMOV	E1. 2	D0
		[DEMOV	E63. 2	D2
SM102				
-	[DEADD	D0	D2	D4

The result is $1.2+63.2=64.4$
DO
1.2
6. $32 \mathrm{E}+1$
6. $44 \mathrm{E}+1$

DESUB/Single precision real number subtraction operation

DESUB(P)

Subtract the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the result in the device specified in (d).
-[DESUB (s1) (s2) (d)]
Content, range and data type

(s1)	The subtracted data or the device start number that stores the subtracted data					
(s2) $0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real number	ANYREAL_32				
subtract data or the device start number that						
stores the subtracted						
data			$\quad 0,2^{-126} \leq	(\mathrm{s})	<2^{128} \quad$	Single precision real
:---						
number	ANYREAL_32					

Device used

Instruct	iBarametBre											Pulse Pulidension
	T	C	D	R	SD	LC	HSC	K	H	E	[D]	XXP
DESUB	$\text { Paramet } \Theta$ 1	\bullet										
	$\begin{aligned} & \text { Paramete } \\ & 2 \end{aligned}$	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet	-	-	\bullet
	$\begin{aligned} & \text { Paramete } \\ & 3 \end{aligned}$	-	\bullet	-	\bullet	\bullet	\bullet				\bullet	\bullet

Features

- Subtract the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the subtraction result in the device specified in (d).

When constants (K, H) to (s1), (s2) are specified, the value is automatically converted to a binary floating point data.

- The related devices are as follows.

Devices	Name
SM153	Zero
SM152	Borrow

Content

Condition
The operation result is zero
The absolute value of operation result <2-126

Operation

The zero flag (SM153) turns ON.
The value of (d) becomes the minimum value of a 32-bit real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.

SM151 Carry The absolute value of operation result> 2^{128}

The value of (d) becomes the maximum value of 32 -bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code
4085H
4086H
4084H

Content

The write address in (s1) and (s 2) exceeds the device range The write address in (d) exceeds the device range
When the content of the device specified by (s 1) and (s 2) is an irregular number, a non-number and $\pm \infty$

Example

The calculation result is $1.2-63.2=-62$

DO	1.2	$6.32 \mathrm{E}+1$	$-6.2 \mathrm{E}+1$

DEMUL/Single precision real number multiplication operation

DEMUL(P)

Multiply the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the result in the device specified in (d).

```
-[DEMUL (s1) (s2) (d)]
```


Content, range and data type

Paramete

3

Features

Multiply the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the multiplication result in the device specified in (d).

When constants (K, H) to (s1), (s2) are specified, the value is automatically converted to a binary floating point data.

- The related devices are as follows.

Devices	Name
SM153	Zero
SM152	Borrow
SM151	Carry

Content

Condition	Operation The operation result is zero
The zero flag (SM153) turns ON.	
The absolute value of	The value of (d) becomes the minimum value of a 32-bit
operation result <2 2^{-126}	real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.
The absolute value of	The value of (d) becomes the maximum value of 32-bit real numbers $\left(2^{128}\right)$, and the carry operation result> 2^{128} flag (SM151) turns on.

Error code

Error code

4085H
4086H
4084H

Example

Content

The write address in (s1) and (s2) exceeds the device range The write address in (d) exceeds the device range
When the content of the device specified by (s 1) and (s 2) is an irregular number, a non-number and $\pm \infty$

The calculated result: 1.2*63.2 $=75.84$

Device	+0	+2	+4	+6
D0	1. $200000 \mathrm{E}+000$	6.320000E +001	7. $584000 \mathrm{E}+001$	$0.000000 \mathrm{E}+000$

DEDIV/Single precision real number division operation

DEDIV(P)

Divide the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the result in the device specified in (d).
-[DEDIV (s1) (s2) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The divided data or the device start number that stores the devided data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(s2)	Division operation data or the device start number that stores the division operation data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	the device start number that stores the operation result	-	Single precision real number	ANYREAL_32

Device used

InstructiBarametßevices Offset Pulse

Features

Divide the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the result of the division in the device specified in (d).

When constants (K, H) to (s 1), (s 2) are specified, the value is automatically converted to a binary floating point data.

- The related devices are as follows.

Devices	Name
SM153	Zero
SM152	Borrow
SM151	Carry

Content

Condition

The operation result is zero

The absolute value of operation result <2-126

The absolute value of operation result> 2^{128}

Operating

The zero flag (SM153) turns ON.

The value of (d) becomes the minimum value of a 32-bit real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.
The value of (d) becomes the maximum value of 32 -bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code
4085H
4086H
4084H

4080H

Content

The write address in (s1) and (s2) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by ($s 1$) and ($s 2$) is an irregular number, a non-number and $\pm \infty$
(s 2) value is 0

Example

Get the calculation result: $63.2 / 1.2=52.66666667$
DO
1.2
6. $32 \mathrm{E}+1$
5. $266666 \mathrm{E}+1$

DEMOV/Single precision real data transmission

DEMOV(P)

Transfer the binary floating point data data stored in the device specified in (s) to the device specified in (d). -[DEMOV (s) (d)]

Content, range and data type

Parameter	Range	Content	Data type	Data type (label)
(s)	The transmitted data or the device that stores the transmitted data	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The device number that stores the transmit destination data		Single precision real number	ANYREAL_32

Device used

InstructioRarameteDevices Offset Pulse

Features

Transfer the binary floating point data data stored in the device specified in (s) to the device specified in (d).
(s) +1

Binary floating point data
(d) +1

Binary floating point data

Error code

Error code

4085H
4086H

Content

(s) read address exceeds the device range
(d) write address exceeds the device range

Example

Assign 3.265 to R10

Device	+0	+1
R8	$0.000000 \mathrm{E}+000$	3.256

DEBCD/Binary floating point \rightarrow decimal floating point conversion

DEBCD(P)

After converting the binary floating point specified in (s) into a decimal floating point, it is stored in the device specified in (d).
-[DEBCD (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device number that stores the binary floating point data	$0,2^{-126} \leq \mid$ (s) $\mid<2^{128}$	Single precision real number	ANYREAL_32
(d)	The device number that stores the converted decimal floating point data	-	Real number	ANY32

Device used

InstructioRarameteDevices

	T	C	D	R	SD	LC	HSC	E	[D]	XXP
DEBCD										
Parameter	\bullet									
1 Parameter \bullet 2	\bullet	\bullet	\bullet	\bullet	\bullet		\bullet	\bullet		

Features

After converting the binary floating point specified in (s) into a decimal floating point, it is stored in the device specified in (d).

High bit
Low bit
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

	Index part(16bits)	Mantissa part(23bits)	
$\uparrow \operatorname{sign}(1$ 位	(s) +1		(s)

High bit

Low bit
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

\#Note

All floating-point operations are performed in binary floating-point. However, the binary floating point is a difficult-to-understand value (special monitoring method), so by converting it into a decimal floating point operation, it is convenient for peripheral equipment to monitor and so on.

Error code

Error code

4085H
4086H
4084H

Content

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

$\mid \mathrm{M}^{\mathrm{MO}} \vdash[$ DEBCD E0. 056 D0 $] \mid$

Get the result: $5600 \times 10-5$

DO	0	0	0	0	0	1	1	1	1	0	1	0	1	0	0
0	0	5600													
D1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1

DEBIN/Decimal floating point \rightarrow binary floating point conversion DEBIN(P)

Convert the decimal floating point specified in (s) to binary floating point and store it in the device specified in (d).
-[DEBIN (s) (d)]
Content, range and data type

Features

Convert the decimal floating point specified in (s) to binary floating point and store it in the device specified in (d).
High bit
Low bit
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

High bit
Low bit
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

- The related devices are as follows.

Devices	Name
SM153	Zero
SM152	Borrow

Content

Condition

The operation result is zero
The absolute value of operation result <2-126

Operation

The zero flag (SM153) turns ON.
The value of (d) becomes the minimum value of a 32 -bit real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.

SM151 Carry	The absolute value of operation result> 2^{128}

Error code

Error code
4085H
4086H
Example

Content

(s) read address exceeds the device range
(d) write address exceeds the device range
$\left.\begin{array}{|ccccc|}\text { SM102 } & & & \\ \hline 1 & {[\text { MOV }} & \text { K23 } & \text { D0 } &] \\ \text { SM102 } & {[\text { MOV }} & \text { K12 } & \text { D1 } &]\end{array}\right]$

The result after conversion:
RO
2. $3 \mathrm{E}+13$

DENEG/Single precision real number sign inversion
 DENEG(P)

After inverting the sign of the single precision real number of the device specified in (d), it is stored in the device specified in (d).
-[DEBEG (d)]
Content, range and data type

Parameter	Conten					typ		Data	bel)
(d)	The de that sto inverted point d	bina ta	mber ng			le pr		ANY	
Device used									
InstructionParameter	Devices								Pulse caxtension
	T	C	D	R	SD	LC	HSC	[D]	XXP
DENEG Parameter 1		-	\bullet	-	\bullet	-	-	-	-

Features

The sign of the binary floating point data of the device specified in (d) is inverted and stored in the device specified in (d).

Used when inverting positive and negative signs.
Error code

Error code

4086H

Content

The write address in (d) exceeds the device range

Example

It becomes -1.43 after conversion

$$
\text { DO } \quad-1.43
$$

DECMP/Single precision real number comparison

DECMP(P)

Compare two data (binary floating point data), and output their large, small, and consistent results to the bit device (3 points).
-[DECMP (s1) (s2) (d)]

Content, range and data type

Parameter	Content Comparison data or (the device number that stores the comparison data	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Data type Single precision real number	Data type (label) ANYREAL_32
(s2)	Comparison data or the device number that stores the comparison data	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real number	ANYREAL_32
(d)The start bit device number that outputs the comparison result (occupies 3 points)	Bit	ANYBIT_ARRAY		

Device used
InstruetàmamPもerices OffsetPulse modifieateonsion

Features
Compare the comparison value (s1) and the comparison source (s2) as a floating point comparison. According to the result of small, consistent, and large, one of (d), (d)+1, (d)+2 turns ON.

(1): Even if the command input is turned OFF and the DECMP command is not executed, (d) to (d)+2 will keep the state before X0 is turned OFF.

When the constant (K, H) to the device specified in (s 1), (s 2) is specified, the value BIN \rightarrow binary floating point data conversion is processed automatically
\#Note: The device specified in (d) occupies 3 points [(d), (d)+1, (d)+2]. Please be careful not to overlap with devices used for other purposes.

Error code

4085H
4086H
4084H

The write address in (s1) or (s2) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s) or (s2) is an irregular number, a non-number and $\pm \infty$

Example

Since the floating point number in R30 is greater than the floating point number in D30, M12 turns ON.

M10	0
M11	0
M12	1

DEZCP/Binary floating point bandwidth comparison

DEZCP(P)
Compare the comparison range and data (binary floating point) of high and low 2 points, and output the result of its large, small, and bandwidth to the bit device (3 points).
-[DEZCP (s1) (s2) (s3) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparison data or the device number that stores the comparison data	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real number	ANYREAL_32
(s2)	Comparison data or the device number that stores the comparison data	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real number	ANYREAL_32
(s3)	Comparison data or the device number that stores the comparison data	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The start bit device number that outputs the comparison result (occupies 3 points)	-	Bit	ANYBIT_ARRAY

Device used

InstruetaivamPemi																Pulse ieateonsion
Y	M	S	SM	D.b	T	C	D	R	SD	LC	HSC	K	H	E	[D]	XXP
DEZCPParameter 1					-	-	\bullet	\bullet	-	-	-	\bullet	\bullet	\bullet	\bullet	\bullet
Parameter 2					-	\bullet	-	-	-	-	-	-	-	\bullet	\bullet	\bullet
Parameter 3					\bullet	-	\bullet	\bullet	-	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet

Paramer

4

Features

Compare the comparison value ($s 1$), ($s 2$) and the comparison source ($s 3$) as a floating point comparison, according to its small, range, and large result, one of (d), (d)+1, (d)+2 The bit turns ON.

(1): Even if the instruction input is turned OFF and DEZCP instruction is not executed, (d) to (d)+2 will keep the state before XO is turned OFF.

When the constant (K, H) to the device specified in (s 1), (s 2), (s 3) is specified, the value is automatically converted from BIN to binary floating point for processing.
\#Note: The device specified in (d) occupies 3 points [(d), (d)+1, (d)+2]. Please be careful not to overlap with devices used for other purposes.

Please set the size relationship of the comparison data as $[(\mathrm{s} 1)+1,(\mathrm{~s} 1)] \leq[(\mathrm{s} 2)+1,(\mathrm{~s} 2)]$. In the case of $[(\mathrm{s} 1)+1$, $(s 1)]>[(s 2)+1,(s 2)]$, it is regarded as the value of $[(s 2)+1,(s 2)]$ and $[(s 1)+1,(s 1)]$ Same for comparison.

Error code

Error code

4085H

4086H
4084H

Example

Content

The write address in (s1), (s2) and (s3) exceeds the device range

The write address in (d) exceeds the device range
When the content of the device specified by (s1), (s2) and (s3) is an irregular number, a non-number and $\pm \infty$

Since 2.45 is greater than 1.456 and 2.45 is less than $2356, \mathrm{M} 41$ is set to ON

$M 40$	0
$M 41$	1
$M 42$	0

DESQR/Single precision real square root

DESQR(P)
After the square root of the value specified in (s) is calculated, the calculation result is stored in the device specified in (d).
-[DESQR (s) (d)]

Content, range and data type

Parameter (s)	Content			Range		Data type			Data type (label)		
	The data for square root operation or the device start number that stores the data			$0,2^{-126} \leq\|(s)\|<2^{128}$		Single precision real number			ANYREAL_32		
(d)	The device start number stores operation result			-		Single precision real number			ANYREAL_32		
Device used											
InstructiBaramet®evices				SD	LC	HSC		H	E	Offset Pulse modificaeictension	
T	C	D	R				K			[D]	XXP
DESQR Paramete 1	-	-	-	-	\bigcirc	-	-	-		\bigcirc	\bigcirc
Paramete 2	-	-	\bigcirc	-	-	-				-	-

Features

- After the square root of the value specified in (s) is calculated, the calculation result is stored in the device number specified in (d).

The value specified in (s) can only be set to a positive number. (Cannot perform operations with negative numbers.)

- The related devices are as follows.

Devices	Name
SM153	Zero

Content	
Condition	Operation
The operation result is zero	The zero flag (SM153) turns
	ON.

Error code

Error code

4085H

Content

4086H
The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
4084H
When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

Get the result: D0 is a floating point number 2

Device	+0	+1
D0	2	$0.000000 \mathrm{E}+000$

DESTR/Single precision real number \rightarrow string conversion

DESTR(P)

Convert the binary floating point data data stored in the device specified in (s 1) into a character string according to the display specification stored after the device number specified in (s 2), and store it in the device number specified in (d) or later.

```
-[DESTR (s1) (s2) (d)]
```

Content, range and data type
Cortarcter
(sdriverted single precision real number data or the device start number that stores the data
prizplay the specified device start number that stores the converted value. The device specified in (s 1) is used as the start, and (s2)+2 is used
β start number of the device storing the converted character string

Device used

Features

Convert the binary floating point data data stored in the device specified in (s1) into a character string according to the display specification stored after the device number specified in (s2), and store it in the device number specified in (d) after. You can also directly specify the real number to ($s 1$).

- The converted data differs according to the display specification specified in (s2).

Unit

(s2)
(s2)+1
(s2)+2

Features

0: Decimal point form 1: Exponential form
All digits (total number of strings). Range: 2 to 24
The number of decimal digits. Range: 0 to 7

The range in the above table will change the value range according to the conversion form and other information used

Decimal form

If 0 is specified in (s 2), it will be in decimal form.

Corresponding digit range in decimal form:

Unit

(s2)
(s2) +1
(s2)+2

Features

0: Decimal point form
All digits (total number of strings). Range: 2 to 24.
When (s 2) +2 is not 0 : digits \geq (number of decimal places + 3).

The number of decimal places. Range 0 to 7,

When (s2) +2 is not 0 : digits \geq (number of decimal places + $3)$.
1.Example: The total number of digits is 8 , the number of decimal places is 3 , and when -1.235 is specified, (d) will be stored in the following way.

When displaying character strings, display character strings in normal order from left to right for convenience.

Converted string

D 20	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
0	0														
D 21	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0
0	1														
D 22	0	1	1	1	0	1	0	0	0	1	0	0	1	1	0
0	0	.2													
D 23	1	1	0	0	1	1	0	0	1	0	1	0	1	1	0
0	35														

The corresponding ASCII code is:

D20	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2020	Automatically added Spaces
D21	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	0	3120	31 H (1) 20H (blank)
D22	0	1	1	1	0	1	0	0	0	1	0	0	1	1	0	0	322E	32 H (2) 2EH (.)
D23	1	1	0	0	1	1	0	0	1	0	1	0	1	1	0	0	3533	35 H (5) 33 H (3)

The first one is the sign bit. In the sign, when binary floating point data data is positive, 20 H (blank) is stored, and when it is negative, 2DH is stored.

If the actual number of digits is less than all digits during conversion, 20 H (blank) will be added between the sign and the first number

If the decimal part of the binary floating point data data cannot be accommodated in the decimal part, the lower decimal part will be rounded off.
2. Example: The total number of digits is 8 , the number of decimal places is 2 , and when -1.234 is specified, (d) will be stored in the following way.

SM102			
	[DEMOV	E-1. 234	D0
	[MOV	K0	D10
	[MOV	K8	D11
	[MOV	K2	D12
SM102			
\cdots	D0	D10	D20

The converted string:

D 20	1	0	1	1	0	1	0	0	0	0	0	0	0	1	0
0	-														
D 21	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
0															
D 22	1	0	0	0	1	1	0	0	0	1	1	1	0	1	0
0	1.														
D 23	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0

The corresponding ASCII code is:

D20	1	0	1	1	0	1	0	0	0	0	0	0	0	1	0	0	202D
D21	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2020
D22	1	0	0	0	1	1	0	0	0	1	1	1	0	1	0	0	2E31
D23	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	3332
D24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	---

In the above example: the low byte of D20 stores the negative sign 2DH ${ }^{-}$. Then due to insufficient number of digits, the high byte of D20 and D21 are both 20H (blank). Finally, D22 to D23 store numeric characters 1.23

Exponential form

When 1 is specified in (s2), it will be in exponential format.

The corresponding digit range in exponential form:

Unit

(s2)
(s2)+1

Features

1: Exponential form
All digits (total number of strings). Range: 2 to 24.
(s2)+2 when non-zero: digits \geq (number of decimal places + 7)
(s2) +2

The number of decimal places. Range 0 to 7
(s2)+2 when non-zero: digits \geq (number of decimal places + 7)

For example 3 , all digits are 12 , decimal place is 4 , and 1234.5 is specified, (d) and later will be stored as follows.

SM102			
-	[DEMOV	E1234. 5	
	[MOV	K1	D10
	[MOV	K12	D11
	[MOV	K4	D12
$\stackrel{\text { SM102 }}{2}$	D0	D10	D20

The converted string:

| D20 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D21 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1. |
| D22 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 23 |
| D23 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 45 |
| D24 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | $\mathrm{E}+$ |
| D25 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 03 |
| D26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \ldots |

The corresponding ASCII code is:

D20	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2020
D21	1	0	0	0	1	1	0	0	0	1	1	1	0	1	0	0	2 E 31
D22	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	3332
D23	0	0	1	0	1	1	0	0	1	0	1	0	1	1	0	0	3534
D24	1	0	1	0	0	0	1	0	1	1	0	1	0	1	0	0	$2 \mathrm{B45}$
D25	0	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	3330
D26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000

In the sign of the integer part, when the binary floating point data data is positive, 20 H (blank) is stored, and when it is negative, 2DH is stored.

The integer part is fixed to 1 digit. 20 H (blank) is stored between the integer part and the Sign.
If the decimal part of the binary floating point data data cannot be accommodated in the decimal part, the lower decimal part will be rounded off.

When the number of decimal places is set to other than $0,2 \mathrm{EH}($.$) is automatically stored in the number of$ specified decimal places +1 digit. When the decimal place is $0,2 \mathrm{EH}($.$) is not stored.$

In the sign of the exponent, $2 \mathrm{BH}^{+}$is stored when the exponent is positive, and 2 DH is stored when it is negative.

The exponent is fixed to 2 digits. When the exponent part is a 1 -digit number, $30 \mathrm{H}(0)$ is stored between the signs of the exponent part.

00 H is automatically stored at the end of the converted character string.
Example 4: All digits are 12 , decimal places are 3 , and -16346 is specified, (d) will be stored in the following way.

SM102			
,	[DEMOV	E-16346	D0
	[MOV	K1	D10
	[MOV	K12	D11
	[MOV	K3	D12
SM102			
	D0	D10	D20

The converted string:

D20	1	0	1	1	0	1	0	0	0	0	0	0	0	1	0	0	-
D21	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	0	1
D22	0	1	1	1	0	1	0	0	0	1	1	0	1	1	0	0	.6
D23	1	1	0	0	1	1	0	0	1	0	1	0	1	1	0	0	35
D24	1	0	1	0	0	0	1	0	1	1	0	1	0	1	0	0	$\mathrm{E}+$
D25	0	0	0	0	1	1	0	0	0	0	1	0	1	1	0	0	04
D26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\ldots

The corresponding ASCII code is:
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline \text { D20 } & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$ 202D

As in the above example:
The low byte of D20 stores the negative sign 2DH
Then due to insufficient number of digits, the high byte of D20 and the low bit of D21 are both 20H (blank).
16346 becomes the string $1.635 \mathrm{E}+04$, in which the last digit " 6 " of 16346 is rounded.
The exponent part is $34 \mathrm{H}(4)$ with only one bit, then add $30 \mathrm{H}(0)$ between the Signs 2 DH and $34 \mathrm{H}(4)$.
Finally D26 automatically stores 00 H
Example 5: All digits are 12, and the number of decimal places is 0 . If -16346 is specified, (d) will be stored as follows.

The converted string:

D20	1	0	1	1	0	1	0	0	0	0	0	0	0	1	0	0	-
D21	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	
D22	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	
D23	0	0	0	0	0	1	0	0	0	1	0	0	1	1	0	0	2
D24	1	0	1	0	0	0	1	0	1	1	0	1	0	1	0	0	E+
D25	0	0	0	0	1	1	0	0	0	0	1	0	1	1	0	0	04
D26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.

The corresponding ASCII code is:
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline \text { D20 } & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$ 202D

This example mainly shows that if the decimal place is set to 0 , the decimal point $2 \mathrm{EH}($.$) will be automatically$ omitted.
\#Note: When the binary floating point data is converted, the more digits, the lower the accuracy of the digits, the worse the accuracy of the digits, and the conversion value may be inaccurate due to the progress.

Error code

Error code

4085H
4086H
4084H

Content

The read address of (s1) and (s2) exceeds the device range
The write address of (d) exceeds the device range
When the content of the specified device ($s 1$) and ($s 2$) is an irregular number, a non-number, or $\pm \infty$
When the format specified in (s 2) is other than 0 or 1
When all the digits specified in $(\mathrm{s} 1)+1$ exceeds the value of 24
When the number of decimal places specified in (s 2) +2 exceeds the range of 0 to 7
In the decimal form, when (s 2) is 0 .

1. When the number of decimal places is $0:[(s 2)+1]<2$
2. When the number of decimal places is other than 0 : [(s2)+1]<(number of decimal places +3)
In the exponential form, when (s 2) is 0 .
3. When the number of decimal places is $0:[(s 2)+1]<6$
4. When the number of decimal places is other than 0 : $[(\mathrm{s} 2)+1]<$ (number of decimal places +7)

DEVAL/String \rightarrow single precision real number conversion

DEVAL(P)

The character string stored in the device number specified in (s) and later is converted to a binary floating point data, and then stored in the device specified in (d).

```
-[DEVAL (s) (d)]
```


Content, range and data type

Parameter				Range			Data type			Data type (label)		
(s)	String data for single precision real number or the device start number that stores the string data			-			String			ANYSTRING_SINGLE		
(d)	The device start number that stores the converted single precision real number			-			Single precision real number			ANYREAL_32		
Device used												
InstructParamemices				T	C	D	R	SD	LC	HSC	Offset Pulse modificatidemsion	
KnX	KnY	KnM	KnS								[D]	XXP
DEVAL Paramet 1				\bullet		\bullet	-	-			\bullet	-
Parameter 2				\bullet		\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet

Features

The character string stored in the device number specified in (s) and later is converted to a binary floating point data, and then stored in the device specified in (d).

Whether the specified string is in decimal form or exponential form, it can be converted to a binary floating point data.

Up to 24 characters can be set for the string. 20 H (blank) and $30 \mathrm{H}(0)$ in the character string are also counted as 1 character.

(1) Decimal form

1）When the character string specified in（s）is in decimal format，the following is the case．
（1）：single－precision real number

（1）：单精度实数

2）In the character string specified in（s），for the character string to be converted to a binary floating point data， the 6 digits after the sign，decimal point，and exponent are valid，and the 7 th digit and later will be discarded during conversion．
（1）：discarded
（2）：single－precision real number

（1）：被舍去。
（2）：单精度实数

When the sign is specified as 2 BH or omitted in the decimal point format，it will be converted as a positive value．In addition，when the sign is specified as 2 DH ，it will be converted as a negative value．

3）If there are 20 H （blank）or $30 \mathrm{H}(0)$ in the character string specified in（s）other than the first $0,20 \mathrm{H}$ and 30 H will be ignored during conversion．
（1）：ignore
（2）：single－precision real number

（1）
（1）：忽略。
（2）：单精度实数

（2）In the case of exponential form

1）When the character string specified in（s）is in exponential form，it is executed as follows．
（1）：single－precision real number

（1）：单精度实数

2）Among the character strings specified in（s），for the character string to be converted to a binary floating point data，the 6 digits after the sign，decimal point，and exponent are valid，and the 7 th digit and later will be discarded during conversion．
（1）：discarded
（2）：single－precision real number

（1）
（1）：被舍去。
（2）：单精度实数

If the sign of the exponent part is specified as 2 BH or omitted in the exponential form，it will be converted as a positive value．When the sign of the exponent is specified as 2DH ，it will be converted as a negative value．
3）If there is 20 H （blank）or $30 \mathrm{H}(0)$ in the character string specified in（s）other than the first $0,20 \mathrm{H}$ and 30 H will be ignored during conversion．

In the exponential character string，if $30 \mathrm{H}(0)$ is stored between＂E＂and the value， 30 H will be ignored during conversion．
（1）：Ignore．
（2）：Single precision real number．

（1）
（1）：忽略。
（2）：单精度实数

The related devices are shown below．

Devices	Name
SM153	Zero
SM152	Borrow
SM151	Carry

Content

Condition

The operation result is zero

The absolute value of operation result＜2－126

The absolute value of operation result＞ 2^{128}

Operating

The zero flag（SM153）turns ON．

The value of（d）becomes the minimum value of a 32－bit real number（ 2^{-126} ），and the borrow flag（SM152）turns on．

The value of（d）becomes the maximum value of 32 －bit real numbers（ 2^{128} ），and the carry flag（SM151）turns on．

Error code

Error code

4085H
4086H
408AH
408BH

4084H

Content

The read address of（s）exceeds the device range
The write address of（d）exceeds the device range
The string is not read by（s），or the string length exceeds 24
When（s）reading a character string，the maximum range of the device is read，but 00 H is not found and the end

When there are characters other than $2 \mathrm{BH}, 2 \mathrm{DH}$ 20 H （space）， 2 EH （．）， $45 \mathrm{H}(\mathrm{E}), 65 \mathrm{H}(\mathrm{e})$ ，and $30 \mathrm{H}(0)$ to 39 H （9） in the string specified in（s）
When there are two or more $2 \mathrm{EH}($.$) characters in the character$ string specified in（s）．

When there are characters other than $45 \mathrm{H}(\mathrm{E}), 2 \mathrm{BH}$

，and $30 \mathrm{H}(0)$ to $39 \mathrm{H}(9)$ in the exponent part specified
in (s), or if there are multiple exponent parts, or exponent In some cases, 2BH or 2DH occurred twice or more. 2BH or 2DH appears twice or more before the first digit of the string specified in (s).

Example

The stored character string of D0 is: $5.2467 \mathrm{E}+12$
The resulting floating point number is: $5.2467 \mathrm{E}+12$

Device	+0	+1	+2
D96	$0.000000 \mathrm{E}+000$	$0.000000 \mathrm{E}+000$	$5.2467 \mathrm{E}+12$

DEXP/Single precision real number exponential operation

DEXP(P)

After performing the exponential calculation of the value specified in (s), the calculation result is stored in the device specified in (d).
-[DEXP (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type		
(s)	Data for exponential calculation or the device start number that stores the data	$0,2^{-126} \leq\|(\mathrm{s})\|<22^{128}$	Single precision real number		Data type (label)
:---					
ANYREAL_32					

Device used

InstructioRarameteDevices Offset Pulse

Features

After performing the exponential calculation of the value specified in (s), the calculation result is stored in the device number specified in (d).

In exponential calculation, the base (e) is calculated as "2.71828".
The related devices are shown below.

Devices
Name

SM153 Zero

SM152 Borrow

SM151
Carry

Content

Condition

The operation result is zero

The absolute value of operation result <2-126

The absolute value of operation result> 2^{128}

Operating

The zero flag (SM153) turns ON.

The value of (d) becomes the minimum value of a 32-bit real number (2^{-126}), and the borrow flag (SM152) turns on.
The value of (d) becomes the maximum value of 32 -bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code

4085H
4086H
4084H

Content

The write address in (s) exceeds the device range The write address in (d) exceeds the device range
When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

\mid M0 \longmapsto [DEXP E10 D0 $\quad] \mid$

Calculate the result:

INT/Single precision real number \rightarrow signed BIN 16-bit data

INT(P)
Convert the specified single precision real number into signed BIN 16-bit data.
-[INT (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Single precision real number or the start	-32768 to 32767	Single precision real number	ANYREAL_32

Features

- Convert the single precision real number specified in (s) into signed BIN 16-bit data and store it in the device specified in (d).
- The converted data will be rounded to the first digit below the decimal point of the single precision real number specified in (s).
-When setting the input value with the engineering tool, rounding errors may occur.
- The related devices are as follows.

Error code

Error code
4085H
4086H
4084H

Content

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Get the conversion result:
$\left.\begin{array}{ll|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l} & \text { Device } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } \\ \text { RO } & \text { F } & \\ \hline & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

And the borrow means turn ON

SM151	0
SM152	1
SM153	0

DINT/Single precision real number \rightarrow signed BIN 32-bit data

DINT(P)

Convert the specified single precision real number into signed BIN 32-bit data.
-[DINT (s) (d)]
Content, range and data type

Features

- Convert the binary floating point data specified in (s) into signed BIN 32-bit data and store it in the device specified in (d).
- The converted data will be rounded to the first digit below the decimal point of the binary floating point data specified in (s).
- When setting the input value with the engineering tool, rounding errors may occur.
- The related devices are as follows.

Devices	Name	Content	
		Condition	Operating
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result <2-126	The value of (d) becomes the minimum value of a 32 -bit real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.
SM151	Carry	The absolute value of operation result> 2^{128}	The value of (d) becomes the maximum value of 32 -bit real

numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code
4085H
4086H
4084H

Content

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range
When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

Get the conversion result:

	Device	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
RO	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	34	

And the borrow means turn ON

SM151	0
SM152	1
SM153	0

DLOG10/Single precision real number common logarithmic operation

DLOG10(P)

Calculate the common logarithm (base 10 logarithm) of the value specified in (s), and store the result of the operation in the device specified in (d).
-[DLOG10 (s) (d)]
Content, range and data type

Parameter(s)	Content		Range		Data type			Data type (label)	
	Data for common logarithmic operations or the device start number storing the data		$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$		Single precision real number			ANYREAL_32	
(d)	The device start number storing operation result				Single precision real number			ANYREAL_32	
Device used									
InstructioRarameteDevices			R	SD	LC		E		Pulse iextension
T	C	D				HSC		[D]	XXP
DLOG10 Parameter ${ }^{-}$ 1	-	-	-	\bullet	-	\bullet	\bullet	\bullet	\bullet

Features

Calculate the common logarithm (base 10 logarithm) of the value specified in (s), and store the result of the calculation in the device number specified in (d).

The value specified in (s) can only be set to a positive number. (Cannot perform operations with negative numbers.)

- The related devices are as follows.

Devices	Name	Content	
		Condition	Operating
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result <2 2^{-126}	The value of (d) becomes the minimum value of a 32-bit real number (2^{-126}), and the borrow flag (SM152) turns on.
SM151	Carry	The absolute value of operation result> 2^{128}	The value of (d) becomes the maximum value of 32 -bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code

4085H
4086H
4084H

Example

$\left.\left\lvert\, \begin{array}{lllll}\text { SM102 } & \text { [DLOG10 } & \text { E3. } 4 & \text { D0 }\end{array}\right.\right]$

Get calculation results

DLOGE/Single precision real number natural logarithm operation

DLOGE(P)

After calculating the logarithm when the natural logarithm e of the value specified in (s) is the base, store the calculation result in the device specified in (d).
-[DLOGE (s) (d)]

Content, range and data type

Features

- After calculating the logarithm when the natural logarithm e of the value specified in (s) is the base, store the result of the calculation in the device number specified in (d).

- The value specified in (s) can only be set to a positive number. (Cannot perform operations with negative numbers.)
- The related devices are as follows.

Devices	Name
SM153	Zero
SM152	Borrow
SM151	
	Carry

Content

Condition	Operating The operation result is zero The zero flag (SM153) turns ON.
The absolute value of	The value of (d) becomes the minimum value of a 32-bit
operation result <2 2^{-126}	real number (2 $\left.2^{-126}\right)$, and the borrow flag (SM152) turns on.
The absolute value of	The value of (d) becomes the maximum value of 32-bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code

4085H
4086H

Content

The write address in (s) exceeds the device range
The write address in (d) exceeds the device range

4084H

Example

The result is as below:
D0 $\quad 3.688879$
$\mid \xrightarrow{\text { M0 }} \longmapsto$ [DLOGE E40 D0 $] \mid$

When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

[^0]: The instruction is to take the SINH value from a binary floating point number. The calculation formula is sinh value $=(\mathrm{e} s-\mathrm{e}-\mathrm{s}) / 2$.

 The related devices are shown below.

